首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7655篇
  免费   686篇
  国内免费   69篇
  2023年   54篇
  2022年   98篇
  2021年   206篇
  2020年   133篇
  2019年   190篇
  2018年   203篇
  2017年   215篇
  2016年   254篇
  2015年   440篇
  2014年   445篇
  2013年   563篇
  2012年   658篇
  2011年   598篇
  2010年   427篇
  2009年   379篇
  2008年   454篇
  2007年   392篇
  2006年   360篇
  2005年   307篇
  2004年   334篇
  2003年   237篇
  2002年   254篇
  2001年   91篇
  2000年   68篇
  1999年   81篇
  1998年   62篇
  1997年   51篇
  1996年   46篇
  1995年   44篇
  1994年   39篇
  1993年   47篇
  1992年   49篇
  1991年   44篇
  1990年   50篇
  1989年   44篇
  1988年   29篇
  1987年   26篇
  1986年   26篇
  1985年   34篇
  1984年   35篇
  1983年   25篇
  1982年   34篇
  1981年   21篇
  1980年   22篇
  1979年   24篇
  1978年   24篇
  1977年   17篇
  1976年   16篇
  1975年   17篇
  1974年   13篇
排序方式: 共有8410条查询结果,搜索用时 125 毫秒
51.
52.
53.
54.
55.
At temperatures lower than 37°C, the ethanol inhibition constant (Ki) for growth or fermentation inrho + cells of theSaccharomyces cerevisiae strain S288C was always higher (1.1M) than inrho mutants (0.7M). At 37°C these differences disappeared, and both strains were equally inhibited by ethanol (Ki=0.7m). Mitochondrial activity can be inhibited by high ethanol concentration and temperature. In fact, the stronger inhibition by ethanol of therho + strain at 37°C was due to the fact that, under these conditions, this strain loses the advantage conferred by mitochondrial activity since the induction ofrho cells in the population is very high. This does not result in an increase in the frequency ofrho mutants because of the poor viability of these mutants in conditions of high temperature and ethanol. In consequence, S288C strain becomes as strongly inhibited by ethanol as therho mutant strains. Differences in viability were not related to the fatty acids and ergosterol composition of the strain. In the presence of ethanol, bothrho + andrho strains modified their lipids in the same way, but these changes did not improve their ethanol tolerance. They were not due to differences in adaptation to ethanol either, since after successive transfers in ethanol, growth () and fermentation () rates in therho mutants were increasingly inhibited with time, whereas in the S288C strain inhibition of and by ethanol remained unaltered. Rather,rho mutants are less viable thanrho + cells because of the inability of the former to respire. At 37°C the Ki increased to 0.9M ethanol either when mitochondrial from highly ethanol-tolerant wine yeasts were transferred torho mutants of the strain S288C or when the mitochondria of strain S288C were preadapted by growing the strain in glycerol instead of glucose before it was cultivated in ethanol.  相似文献   
56.
The use of nitrogen-fixing trees such as black alder (Alnus glutinosa L. Gaertn.) as forest silvicultural tools has recently been recognized. The potential benefit of black alder in silvicultural practices may be reduced by nitrate fertilization. Fifteen-month-old, nodulated, black alder rooted cuttings were fertilized for 6 days with 0, 7.5 or 15 mM NO3 to determine the influence of nitrate on acetylene reduction, nodule respiration and net photosynthesis. Acetylene reduction, net photosynthesis and nodule respiration were measured on the second, fourth and sixth days of nitrate application. Nitrate treatment significantly reduced acetylene reduction and nodule respiration by day 4. Acetylene reduction was 75% lower and nodule respiration 36% lower for the 15 mM NO3 treatment when compared to that of the control treatment. By day 6, net photosynthesis and nodule respiration were significantly reduced by 29 and 59%, respectively, for seedlings treated with 15 mM NO3. This study suggests that nitrate fertilization has a profound influence on nitrogenase activity and that nitrogen-fixing tree species may respond to nitrate fertilization by shifting photosynthetic rates.  相似文献   
57.
The respective effects of meristem temperature, vapour pressuredeficit (VPD) and photosynthetic photon flux density (PPFD)on leaf elongation rate (LER) of maize, in the absence of waterdeficit in the soil have been quantified. This analysis wascarried out in a series of field experiments in northern andsouthern France over several seasons and years, and in growthchamber experiments. LER was measured with 10 min steps, togetherwith meristem temperature, VPD and PPFD at leaf level in threetypes of experiments: in growth chamber experiments with stepsin PPFD or VPD at constant meristem temperature, in growth chamberexperiments with several combinations of constant, but contrasting,PPFDs, VPDs and meristem temperatures, and in the field withfluctuating conditions, (i) When evaporative demand was low(night or day with low air VPD), LER was only linked to meristemtemperature, regardless of other climatic conditions, (ii) Lighthad no effect per se on LER in the range from 0 to 1500 molm–2 s–1 for time-scales longer than 2 h, providedthat its indirect effects on meristem temperature and on evaporativedemand were corrected (in the growth chamber) or taken intoaccount (in the field), and provided that cumulated PPFD overa weekly time-scale was compatible with field conditions, (iii)Evaporative demand sensed by growing leaves, as estimated bymeristem-to-air vapour pressure difference, markedly affectedLER in the range from 1–4 kPa, at all time-scales understudy, with a unique relationship in the growth chamber (constantconditions) and in the field (fluctuating conditions). Thiseffect was only observed when PPFD was high enough for stomatato open. The negative effect of evaporative demand on LER wasprobably not due to long distance root-to-shoot signalling,since soil was wet, calculated root water potential remainedclose to 0 MPa and concentration of ABA in the xylem sap wasvery low. Therefore, it is proposed to model maize LER witha two-step process, involving the calculation of the maximumLER at a given meristem temperature and then the calculationof the reduction in LER due to evaporative demand. Joint analysisof the whole set of data by using the two equations yieldeda r2 of 0.75. This two-step process would be more accurate thanthe provision of LER from temperature only in cases where airVPD frequently exceeds 2 kPa. Key words: Leaf growth, light, evaporative demand, temperature, thermal time, water deficit, ABA, Zea mays L.  相似文献   
58.
Abstract: The inorganic phosphate (Pi) NMR peak in brain has an irregular shape, which suggests that it represents more than a single homogeneous pool of Pi. To test the ability of the Marquardt-Levenberg (M-L) nonlinear curve fit algorithm software (Peak-Fit) to separate multiple peaks, locate peak centers, and estimate peak heights, we studied simulated Pi spectra with defined peak centers, areas, and signal-to-noise (S/N) ratios ranging from ∞ to 5.8. As the S/N ratio decreased below 15, the M-L algorithm located peak centers accurately when they were detected; however, small peaks tended to grow smaller and disappear, whereas the amplitudes of larger peaks increased. We developed an in vitro three-compartment model containing a mixture of Pi buffer, phosphocreatine, phosphate diester, and phosphate monoester (PME), portions of which were adjusted to three different pHs before addition of agar. Weighed samples of each buffered gel together with phospholipid extract and bone chips were placed in an NMR tube and covered with mineral oil. Following baseline correction, it was possible to separate the Pi peaks arising from the three compartments with different pH values if each peak made up 10–35% of total Pi area. In vivo, we identified the plasma compartment by intraarterial infusion of Pi. It was assumed that intracellular compartments contained high-energy phosphates and took up glucose. Based on these assumptions we subjected the brains to complete ischemia and observed that Pi compartments at pH 6.82, 6.92, 7.03, and 7.13 increased markedly in amplitude. If the brain cells took up and phosphorylated 2-deoxyglucose (2-DG), 2-DG-6-phosphate (2-DG-6-P) would appear in the PME portion of the spectrum ionized according to pHi. Four 2-DG-6-P peaks with calculated pH values of 6.86, 6.94, 7.04, and 7.15 did appear in the spectrum, thereby confirming that the four larger Pi peaks represented intracellular spaces.  相似文献   
59.
Synopsis Lake Malawi/Niassa is the second largest rift valley lake in Africa, with an area of 28 800 km2, and an average and maximum depth of 292 m and>700 m, respectively. The lake is well known for the great diversity of fish occurring in the inshore zone. However, the offshore fish community is poorly documented. To rectify this, regular sampling was undertaken over two years, using trawl and gillnets at six offshore locations. This paper reports on the species composition, spatial distribution and breeding biology of the dominant cichlids species from the offshore pelagic zone. Cichlids formed approximately 88% of the offshore fish biomass. Most abundant were two species of zooplanktivores in the genus Diplotaxodon that made up 71% of the offshore fish biomass. An undescribed species, given the cheironym D. bigeye, was mainly found at a depth of 220 m during the day, but moved into near surface waters at night when the moon was full. This species was absent from the shallow regions of the lake. The most abundant offshore species was D. limnothrissa, which was distributed evenly throughout the lake to depths of 220 m. A less common offshore zooplanktivore was Copadichromis quadrimaculatus that formed 5% of the biomass and was confined to the upper 100 m of the water column. The main piscivores were in the genus Rhamphochromis and formed approximately 10% of the offshore fish biomass. The two dominant taxa were R. longiceps and the large Rhamphochromis group, and both were more common in the southern half of the lake. The former occurred mainly in the upper 100 m of the water column and the latter mainly at depths of 100–150 m. The length at maturity and fecundity for the dominant offshore species were estimated and seasonal breeding cycles determined from gonad activity and gonado-somatic indices.  相似文献   
60.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号