首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   120篇
  2022年   9篇
  2021年   12篇
  2020年   8篇
  2019年   14篇
  2018年   7篇
  2017年   19篇
  2016年   17篇
  2015年   23篇
  2014年   31篇
  2013年   41篇
  2012年   43篇
  2011年   58篇
  2010年   46篇
  2009年   22篇
  2008年   45篇
  2007年   31篇
  2006年   38篇
  2005年   37篇
  2004年   28篇
  2003年   24篇
  2002年   31篇
  2001年   36篇
  2000年   23篇
  1999年   24篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   14篇
  1993年   7篇
  1992年   24篇
  1991年   21篇
  1990年   18篇
  1989年   16篇
  1988年   13篇
  1987年   14篇
  1986年   16篇
  1985年   13篇
  1984年   8篇
  1983年   9篇
  1982年   11篇
  1981年   13篇
  1980年   6篇
  1979年   14篇
  1977年   14篇
  1976年   8篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1965年   5篇
排序方式: 共有1039条查询结果,搜索用时 656 毫秒
61.
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   
62.
63.
Opioid receptors have been reported on immune cells of several species and shown to subserve effector functions of these cell types. Mu-selective opioid agonists such as morphine are immunosuppressive, whereas certain delta-opioid receptor-selective agonists have been associated with immunopotentiation. We have previously shown that intracerebroventricular administration of the non-peptidic delta-opioid receptor agonists did not alter certain parameters of immunocompetence. In this study, we evaluated the in vitro effects of the novel non-peptidic opioid 4-tyrosylamido-6-benzyl-1,2,3,4 tetrahydroquinoline (CGPM-9) on lymphocyte and macrophage functions. We demonstrated that CGPM-9 enhanced rat thymic lymphocyte proliferative response to concanavalin A (2.85- to 5.5-fold increases), and suppressed LPS-induced nitric oxide (67 to 72 percent reduction) and TNF-alpha production (46 percent reduction) by peritoneal macrophages, compared with untreated control. The mu-opioid receptor selective antagonist CTOP used at equimolar doses, significantly suppressed the effect of CGPM-9 on lymphocyte and macrophage functions (CTOP alone did not show any effect on lymphocyte or macrophage functions). In summary, CGPM-9 activated thymic lymphocyte proliferation and suppressed macrophage functions by acting at mu-opioid receptors. This suggests that opioid receptors on immunocytes may be coupled to different signaling pathways depending on the cell type and effector function being analyzed. The mechanism (s) associated with the differential effect of CGPM-9 on these immune cells remains to be elucidated. The pharmacotherapeutic potential for compounds such as CGPM-9 which potentiate T lymphocyte proliferation and suppress production of macrophage-derived inflammatory cytokines is substantial in research and clinical medicine.  相似文献   
64.
65.
The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which functions in parallel with the Galpha subunit Gpa1 to control the adenylyl cyclase (Cac1). Aca1 interacted with the C terminus of Cac1 in the yeast two-hybrid system. By molecular and genetic approaches, Aca1 was shown to play a critical role in mating by regulating cell fusion and filamentous growth in a cAMP-dependent manner. Aca1 also regulates melanin and capsule production via the Cac1-cAMP-protein kinase A pathway. Genetic epistasis studies support models in which Aca1 and Gpa1 are necessary and sufficient components that cooperate to activate adenylyl cyclase. Taken together, these studies further define the cAMP signaling cascade controlling virulence of this ubiquitous human fungal pathogen.  相似文献   
66.
67.
68.
Sex differences in fatigue resistance of the adductor pollicis (AP) muscle were studied in 24 older adults who were divided into three groups: 12 older men (69.8 +/- 4.60 years), 6 older women not on hormone replacement therapy (HRT) (70.2 +/- 4.02 years), and 6 older women on HRT (68.7 +/- 6.47 years). Fatigue in the AP muscle was induced using an intermittent (5 s contraction, 5 s rest) submaximal voluntary contraction (50% of maximal voluntary contraction (MVC)) protocol, which was continued until exhaustion (i.e., when subjects could either no longer maintain a 5-s contraction at 50% MVC or when the MVC was deemed to be lower than the target force). There was no effect of HRT on MVC or time to fatigue (TTF); therefore, the older women were pooled as one subject group. At baseline, men were stronger than women for MVC (75.9 +/- 18.8 N in men vs. 56.8 +/- 10.0 N in women; P < 0.05) and evoked twitch force (7.3 +/- 1.7 N in men vs. 5.2 +/- 0.8 N in women; P < 0.05). There was no difference in TTF between men and women (14.77 +/- 7.06 min in men vs. 11.53 +/- 4.91 min in women; P > 0.20), nor was there a significant relationship between baseline muscle force and TTF (r = 0.14). There was also no difference in the pattern of fatigue and recovery between the men and women. These results suggest that there is no difference in endurance or fatigue characteristics of the AP muscle in men and women over the age of 65 years, and that baseline muscle force does not predict fatigue resistance in this muscle.  相似文献   
69.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function. The first region is the interdomain hinge between the transmembrane and the amphipathic alpha-helices of TatA and TatB proteins. The second region is within the amphipathic helices of TatA and TatB. In particular an invariant phenylalanine residue within TatA proteins is essential for activity, whereas a string of glutamic acid residues on the same face of the amphipathic helix of TatB is important for function.  相似文献   
70.
Esposito D  Hicks AJ  Stern DB 《The Plant cell》2001,13(10):2373-2384
To study the role of initiation codon context in chloroplast protein synthesis, we mutated the three nucleotides immediately upstream of the initiation codon (the -1 triplet) of two chloroplast genes in the alga Chlamydomonas reinhardtii. In prokaryotes, the -1 triplet has been proposed to base pair with either the 530 loop of 16S rRNA or the extended anticodon of fMet-tRNA. We found that in vivo, none of the chloroplast mutations affected mRNA stability. However, certain mutations did cause a temperature-sensitive decrease in translation and a more dramatic decrease at room temperature when combined with an AUU initiation codon. These mutations disrupt the proposed extended base pairing interaction with the fMet-tRNA anticodon loop, suggesting that this interaction may be important in vivo. Mutations that would still permit base pairing with the 530 loop of the 16S rRNA also had a negative effect on translation, suggesting that this interaction does not occur in vivo. Extended base pairing surrounding the initiation codon may be part of a mechanism to compensate for the lack of a classic Shine-Dalgarno rRNA interaction in the translation of some chloroplast mRNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号