首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
  2022年   3篇
  2017年   2篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1996年   3篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有54条查询结果,搜索用时 359 毫秒
21.
Riparian ecosystems can harbor great diversity and provide important ecological functions such as improving water quality. The impact of eutrophication on riparian ecosystems, however, is unclear. We conducted a mesocosm experiment to study the effects of nutrient loading on riparian ecosystems. We specifically asked whether the source of nutrients in the riparian zone affects the complex interactions that occur between surface water and adjacent wetlands. We also studied litter decomposition in the wetland component of the mesocosms, because litter accumulation in fens is assumed to control succession toward floating mats. Each mesocosm consisted of an upland component, referred to as the bank, and a water compartment. The bank and water compartments were planted with typical riparian zone and open water fen species prior to the addition of nitrogen (N) and phosphorus (P) in different combinations to either the bank or the surface water. Nutrient addition (mainly P) resulted in increased plant production and higher expansion rates of plants on the bank and in the water. There were also clear interactions in plant responses between the bank and water. Only eutrophic species increased shoot densities after fertilization. Nutrient addition further resulted in higher litter production, especially on the banks, and stimulated decomposition. Both the plant responses and the litter experiment indicated that eutrophication would accelerate succession to floating mats. Such floating fen mats are not likely to have the typical species-rich combination of desirable species; however, as our results suggest that they would be dominated by a few eutrophic species.  相似文献   
22.
A series of diphenylphosphonate-based probes were developed for the trypsin-like serine proteases. These probes selectively target serine proteases rather than general serine hydrolases that are targets for fluorophosphonate-based probes. This increased selectivity allows detection of low abundance serine proteases in complex proteomes using simple SDS-PAGE methods. We present here the application of multiple probes in enzyme activity profiling of intact mast cells, a type of inflammatory cell implicated in allergy and autoimmune diseases.  相似文献   
23.
Voluntary activation levels during lengthening, isometric, and shortening contractions (angular velocity 60 degrees/s) were investigated by using electrical stimulation of the femoral nerve (triplet, 300 Hz) superimposed on maximal efforts. Recruitment of fiber populations was investigated by using the phosphocreatine-to-creatine ratio (PCr/Cr) of single characterized muscle fibers obtained from needle biopsies at rest and immediately after a series of 10 lengthening, isometric, and shortening contractions (1 s on/1 s off). Maximal voluntary torque was significantly higher during lengthening (270 +/- 55 N.m) compared with shortening contractions (199 +/- 47 N.m, P < 0.05) but was not different from isometric contractions (252 +/- 47 N.m). Isometric torque was higher than torque during shortening (P < 0.05). Voluntary activation level during maximal attempted lengthening contractions (79 +/- 8%) was significantly lower compared with isometric (93 +/- 5%) and shortening contractions (92 +/- 3%, P < 0.05). Mean PCr/Cr values of all fibers from all subjects at rest were 2.5 +/- 0.6, 2.0 +/- 0.7, and 2.0 +/- 0.7, respectively, for type I, IIa, and IIax fibers. After 10 contractions, the mean PCr/Cr values for grouped fiber populations (regardless of fiber type) were all significantly different from rest (1.3 +/- 0.2, 0.7 +/- 0.3, and 0.8 +/- 0.6 for lengthening, isometric, and shortening contractions, respectively; P < 0.05). The cumulative distributions of individual fiber populations after either contraction mode were significantly different from rest (P < 0.05). Curves after lengthening contractions were less shifted compared with curves from isometric and shortening contractions (P < 0.05), with a smaller shift for the type IIax compared with type I fibers in the lengthening contractions. The results indicate a reduced voluntary drive during lengthening contractions. PCr/Cr values of single fibers indicated a hierarchical order of recruitment of all fiber populations during maximal attempted lengthening contractions.  相似文献   
24.
Question: High atmospheric nitrogen (N) deposition has been shown to affect productivity and species composition of terrestrial ecosystems. This study focused on the differential effects of the two inorganic N forms in atmospheric deposition (i.e. ammonium and nitrate). Methods and location: Nutrient addition experiments were carried out during 4 years in a mesotrophic fen in a low‐deposition area in Ireland. In a factorial design, plots were fertilized with ammonium and/or nitrate, in two doses comparable with 35 and 70 kg N ha?1 y?1 and compared with an unfertilized control. Results: Vascular plant biomass as well as bryophyte biomass were not affected by N dose but showed significantly different responses to the N form. In the ammonium‐fertilized plots, vascular plant biomass was higher and moss biomass was lower than the control, while nitrate additions had no effect. Vascular plant species density was high (16 species per 0.49 m2) and was not affected by any of the treatments; bryophyte species density was also high (seven species per 0.04 m2) but showed a significant decrease upon ammonium fertilization. Conclusion: The vulnerability of the mesotrophic vegetation to enhanced atmospheric N deposition depends strongly on the N form. If N would be mainly deposited as NOx, no detrimental effects on the vegetation will occur. If, however, the deposition is mainly in the form of NHy, the bryophyte vegetation will be seriously damaged, while the vascular plant vegetation will show an increased biomass production with possible shifts in dominance from Carex and herb species to grasses and shrubs.  相似文献   
25.
Summary A comparison is made of macrofauna taxa between ditches that are similar according to criteria that are also used for making inventories. Four complexes of ditches were selected in the Eempolder. An extended sampling programme was carried out in the same diches the Department of Water Works of the Province of Utrecht sampled because of their inventory of natural communities. The results of the two sampling programmes are compared and a minimum sample size is calculated.  相似文献   
26.
27.
28.
Cell Biology and Toxicology - Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to...  相似文献   
29.
Cytotoxic T lymphocytes (CTLs) kill virus-infected cells and tumor cells, and play a critical role in immune protection. Our knowledge of how the CTL killing efficiency varies with CTL and target cell numbers is limited. Here, we simulate a region of lymphoid tissue using a cellular Potts model to characterize the functional response of CTL killing of target cells, and find that the total killing rate saturates both with the CTL and the target cell densities. The relative saturation in CTL and target cell densities is determined by whether a CTL can kill multiple target cells at the same time, and whether a target cell can be killed by many CTLs together. We find that all the studied regimes can be well described by a double-saturation (DS) function with two different saturation constants. We show that this DS model can be mechanistically derived for the cases where target cells are killed by a single CTL. For the other cases, a biological interpretation of the parameters is still possible. Our results imply that this DS function can be used as a tool to predict the cellular interactions in cytotoxicity data.  相似文献   
30.
Question: Dutch fen areas have become embedded in intensively used landscapes, resulting in biodiversity loss. Hence, plant species that colonize open water inducing the formation of species‐rich floating peat mats have disappeared. Despite many restoration efforts, they have not returned. Is natural succession towards floating mats impeded by site conditions, dispersal limitations or changed biotic interactions? Location: Six Dutch fen reserves: De Deelen, De Weerribben, De Wieden, Westbroek, Molenpolder and Terra Nova. Methods: In 62 fen ponds we determined plant species richness and expansion into open water. We related these to habitat quality (chemical composition of soil and surface water, pond morphology), dispersal potential (distance to remnant populations, likelihood of dispersal) and biotic interactions (presence of muskrats [Ondatra zibethicus L.] and the keystone species Stratiotes aloides). Results: Factor analysis showed that plants expanded further into open water and bank vegetation had higher species richness in areas with older ponds and lower muskrat densities. Locally, high turbidity hampered colonization. Whenever the water was clear, colonization was higher in shallow ponds, and in deep ponds only if Stratiotes was present. Species richness was negatively correlated to nutrient availability in soil and positively correlated to hydrological isolation (decreased sulphate concentrations). We also found that species richness was higher in sheltered banks. Conclusions: Multiple habitat characteristics (turbidity, water depth, nutrient and sulphate concentrations) and the influence of muskrats and Stratiotes all play a role in the lack of restoration success in Dutch fen ponds. Dispersal limitations seem to be overruled by habitat limitations, as colonization often fails even when sufficient propagule sources are present, or when connectivity is high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号