首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   48篇
  2024年   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有124条查询结果,搜索用时 328 毫秒
71.
SOCS (suppressors of cytokine signaling) proteins are negative regulators of cytokine signaling that function primarily at the receptor level. Remarkably, in vitro and in vivo observations revealed both inhibitory and stimulatory effects of SOCS2 on growth hormone signaling, suggesting an additional regulatory level. In this study, we examined the possibility of direct cross-modulation between SOCS proteins and found that SOCS2 could interfere with the inhibitory actions of other SOCS proteins in growth hormone, interferon, and leptin signaling. This SOCS2 effect was SOCS box-dependent, required recruitment of the elongin BC complex, and coincided with degradation of target SOCS proteins. Detailed mammalian protein-protein interaction trap (MAPPIT) analysis indicated that SOCS2 can interact with all members of the SOCS family. SOCS2 may thus function as a molecular bridge between a ubiquitin-protein isopeptide ligase complex and SOCS proteins, targeting them for proteasomal turnover. We furthermore extended these observations to SOCS6 and SOCS7. Our findings point to a unique regulatory role for SOCS2, SOCS6, and SOCS7 within the SOCS family and provide an explanation for the unexpected phenotypes observed in SOCS2 and SOCS6 transgenic mice.  相似文献   
72.
Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation initiation, because of a lack of a suitable source of VPg-linked viral RNA. We have now used the recently identified murine norovirus (MNV) as a model system for norovirus translation and have extended our previous studies with FCV RNA to examine the role of the other eIF4F components in translation initiation. We now demonstrate that, as with FCV, MNV VPg interacts directly with eIF4E, although, unlike FCV RNA, translation of MNV RNA is not sensitive to 4E-BP1, eIF4E depletion, or foot-and-mouth disease virus Lb protease-mediated cleavage of eIF4G. We also demonstrate that both FCV and MNV RNA translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect to their requirements for the components of the eIF4F translation initiation complex.  相似文献   
73.
Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling.  相似文献   
74.
Sleep deprivation, shift work, and jet lag all disrupt normal biological rhythms and have major impacts on health; however, circadian disorganization has never been shown as a causal risk factor in organ disease. We now demonstrate devastating effects of rhythm disorganization on cardiovascular and renal integrity and that interventions based on circadian principles prevent disease pathology caused by a short-period mutation (tau) of the circadian system in hamsters. The point mutation in the circadian regulatory gene, casein kinase-1epsilon, produces early onset circadian entrainment with fragmented patterns of behavior in +/tau heterozygotes. Animals die at a younger age with cardiomyopathy, extensive fibrosis, and severely impaired contractility; they also have severe renal disease with proteinuria, tubular dilation, and cellular apoptosis. On light cycles appropriate for their genotype (22 h), cyclic behavioral patterns are normalized, cardiorenal phenotype is reversed, and hearts and kidneys show normal structure and function. Moreover, hypertrophy does not develop in animals whose suprachiasmatic nucleus was ablated as young adults. Circadian organization therefore is critical for normal health and longevity, whereas chronic global asynchrony is implicated in the etiology of cardiac and renal disease.  相似文献   
75.
Molecular evolution of the mammalian ribosomal protein gene, RPS14   总被引:4,自引:0,他引:4  
Ribosomal protein S14 genes (RPS14) in eukaryotic species from protozoa to primates exhibit dramatically different intron-exon structures yet share homologous polypeptide-coding sequences. To recognize common features of RPS14 gene architectures in closely related mammalian species and to evaluate similarities in their noncoding DNA sequences, we isolated the intron-containing S14 locus from Chinese hamster ovary (CHO) cell DNA by using a PCR strategy and compared it with human RPS14. We found that rodent and primate S14 genes are composed of identical protein-coding exons interrupted by introns at four conserved DNA sites. However, the structures of corresponding CHO and human RPS14 introns differ significantly. Nonetheless, individual intron splice donor, splice acceptor, and upstream flanking motifs have been conserved within mammalian S14 homologues as well as within RPS14 gene fragments PCR amplified from other vertebrate genera (birds and bony fish). Our data indicate that noncoding, intronic DNA sequences within highly conserved, single-copy ribosomal protein genes are useful molecular landmarks for phylogenetic analysis of closely related vertebrate species.   相似文献   
76.
77.
78.
Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3′ poly(A) tail, and showed the typical picornavirus genome organization; 5′untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3′UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5′UTR, a cis-replication element (CRE) in the 2C coding region and 3′UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3′UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV.  相似文献   
79.
The hypothalamus is a vital part of the central nervous system: it harbors control systems implicated in regulation of a wide range of homeostatic processes, including energy balance and reproduction. Structurally, the hypothalamus is a complex neuroendocrine tissue composed of a multitude of unique neuronal cell types that express a number of neuromodulators, including hormones, classical neurotransmitters, and specific neuropeptides that play a critical role in mediating hypothalamic function. However, neuropeptide and receptor gene expression, second messenger activation, and electrophysiological and secretory properties of these hypothalamic neurons are not yet fully defined, primarily because the heterogeneity and complex neuronal architecture of the neuroendocrine hypothalamus make such studies challenging to perform in vivo. To circumvent this problem, our research group recently generated embryonic- and adult-derived hypothalamic neuronal cell models by utilizing the novel molecular techniques of ciliary neurotrophic factor-induced neurogenesis and SV40 T antigen transfer to primary hypothalamic neuronal cell cultures. Significant research with these cell lines has demonstrated their value as a potential tool for use in molecular genetic analysis of hypothalamic neuronal function. Insights gained from hypothalamic immortalized cells used in conjunction with in vivo models will enhance our understanding of hypothalamic functions such as neurogenesis, neuronal plasticity, glucose sensing, energy homeostasis, circadian rhythms, and reproduction. This review discusses the generation and use of hypothalamic cell models to study mechanisms underlying the function of individual hypothalamic neurons and to gain a more complete understanding of the overall physiology of the hypothalamus.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号