首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2004年   2篇
  2002年   4篇
  2000年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
11.
The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3′→5′ exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3′-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.  相似文献   
12.
A method has been suggested for the synthesis of conjugates of oligodeoxyribonucleotides with chemical constructs mimicking ribonuclease A active center for directed fragmentation of RNA. The method is based on the sequential addition of linker group, 9-(methylamino)anthracene, to 5' or 3' terminal phosphate of oligonucleotide and then imidazole-containing construct by cycloaddition reaction. The conjugates of oligonucleotides complementary to regions 44-61 (2B-R) and 60-76 (1C-R) of yeast phenylalanine tRNA demonstrated ability to cleave tRNA(Phe) under physiological conditions preferably at the sole phosphodiester bond (C63-A64 for 2B-R and C56-G57 for 1C-R, respectively). The half-time of tRNA(Phe) hydrolysis in the presence of 2B-R conjugate was 30 min at 2B-R concentration of 10 microM and several minutes at conjugate concentration of 50 microM.  相似文献   
13.
14.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.  相似文献   
15.
Urokinase-type plasminogen activator (uPA) is a serine protease that converts the plasminogen zymogen into the enzymatically active plasmin. uPA is synthesized and secreted as the single-chain molecule (scuPA) composed of an N-terminal domain (GFD) and kringle (KD) and C-terminal proteolytic (PD) domains. Earlier, the structure of ATF (which consists of GFD and KD) was solved by NMR (A. P. Hansen et al. (1994) Biochemistry, 33, 4847–4864) and by X-ray crystallography alone and in a complex with the soluble form of the urokinase receptor (uPAR, CD87) lacking GPI (C. Barinka et al. (2006) J. Mol. Biol., 363, 482–495). According to these data, GFD contains two β-sheet regions oriented perpendicularly to each other. The area in the GFD responsible for binding to uPAR is localized in the flexible Ω-loop, which consists of seven amino acid residues connecting two strings of antiparallel β-sheet. It was shown by site-directed mutagenesis that shortening of the Ω-loop length by one amino acid residue leads to the inability of GFD to bind to uPAR (V. Magdolen et al. (1996) Eur. J. Biochem., 237, 743–751). Here we show that, in contrast to the above-mentioned studies, we found no sign of the β-sheet regions in GFD in our uPA preparations either free or in a complex with uPAR. The GFD seems to be a rather flexible and unstructured domain, demonstrating in spite of its apparent flexibility highly specific interaction with uPAR both in vitro and in cell culture experiments. Circular dichroism, tryptophan fluorescence during thermal denaturation of the protein, and heteronuclear NMR spectroscopy of 15N/13C-labeled ATF both free and in complex with urokinase receptor were used to judge the secondary structure of GFD of uPA.  相似文献   
16.
Kinetic parameters of cleavage of CpA and UpA sequences in an oligoribonucleotide under the action of artificial ribonuclease ABL3C1 were measured. The compounds were built of RNA-binding domain B, catalytic fragment C, linker L3 comprising 3 methylene groups, and aliphatic fragment A. The rate of cleavage of phosphodiester bonds in CpA sequence within decaribonucleotide UUCAUGUAAA was shown to be 3.4 +/- 0.2 times higher than in UpA sequence. The rate of cleavage of phosphodiester bonds were found to depend on substrate length: a thousandfold increase in cleavage rate constant was observed for CpA sequence in decaribonucleotide as compared with diribonucleotide monophosphate CpA. A slight decrease in the cleavage rates was observed for the reactions proceeding in different buffers at pH 7.0: imidazole > HEPES > phosphate > cacodylate. At the same time, the ratio of cleavage rates for CpA and UpA sequences remained constant.  相似文献   
17.
18.
19.
Kinetic parameters of cleavage of CpA and UpA sites in an oligoribonucleotide under the action of artificial ribonuclease ABL3C1 were measured. The compounds were built of RNA-binding domain B, catalytic fragment C, linker L3 comprising 3 methylene groups, and aliphatic fragment A. The rate of cleavage of phosphodiester bonds in the CpA site within decaribonucleotide UUCAUGUAAA was shown to be 3.4 ± 0.2 times higher than in UpA. The rate of cleavage of phosphodiester bonds was found to depend on substrate length: a thousandfold increase in cleavage rate constant was observed for the CpA site in decaribonucleotide as compared with diribonucleoside monophosphate CpA. A slight decrease in the cleavage rates was observed for the reactions proceeding in different buffers at pH 7.0: imidazole > HEPES > phosphate > cacodylate. At the same time, the ratio of cleavage rates for CpA and UpA sites remained constant.  相似文献   
20.
A method has been suggested for the synthesis of conjugates of oligodeoxyribonucleotides with chemical constructs mimicking the ribonuclease A active center for directed fragmentation of RNA. The method is based on sequential addition of a linker group, 9-(methylamino)anthracene, to the 5"- or 3"-terminal phosphate of oligonucleotide, and then an imidazole-containing construct by cycloaddition. The conjugates of oligonucleotides complementary to regions 44–61 (2B–R) and 60–76 (1C–R) of yeast phenylalanine tRNA proved able to cleave tRNAPhe under physiological conditions preferentially at the sole phosphodiester bond (C63–A64 for 2B–R and C56–G57 for 1C–R, respectively). The half-time of tRNAPhe hydrolysis in the presence of 2B–R conjugate was 30 min at a 2B–R concentration of 10 M and several minutes at conjugate concentration of 50 M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号