首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1608篇
  免费   102篇
  2024年   1篇
  2023年   8篇
  2022年   25篇
  2021年   53篇
  2020年   47篇
  2019年   57篇
  2018年   51篇
  2017年   63篇
  2016年   88篇
  2015年   82篇
  2014年   106篇
  2013年   121篇
  2012年   127篇
  2011年   117篇
  2010年   83篇
  2009年   53篇
  2008年   61篇
  2007年   75篇
  2006年   63篇
  2005年   72篇
  2004年   64篇
  2003年   49篇
  2002年   35篇
  2001年   40篇
  2000年   36篇
  1999年   20篇
  1998年   13篇
  1997年   5篇
  1996年   12篇
  1995年   10篇
  1994年   7篇
  1993年   8篇
  1992年   8篇
  1991年   11篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
排序方式: 共有1710条查询结果,搜索用时 500 毫秒
11.
Repeated clone-to-clone (genetic bottleneck) passages of an RNA phage and vesicular stomatitis virus have been shown previously to result in loss of fitness due to Muller's ratchet. We now demonstrate that Muller's ratchet also operates when genetic bottleneck passages are carried out at 37 rather than 32 degrees C. Thus, these fitness losses do not depend on growth of temperature-sensitive (ts) mutants at lowered temperatures. We also demonstrate that during repeated genetic bottleneck passages, accumulation of deleterious mutations does occur in a stepwise (ratchet-like) manner as originally proposed by Muller. One selected clone which had undergone significant loss of fitness after only 20 genetic bottleneck passages was passaged again in clone-to-clone series. Additional large losses of fitness were observed in five of nine independent bottleneck series; the relative fitnesses of the other four series remained close to the starting fitness. In sharp contrast, when the same selected clone was transferred 20 more times as large populations (10(5) to 10(6) PFU transferred at each passage), significant increases in fitness were observed in all eight passage series. Finally, we selected several clones which had undergone extreme losses of fitness during 20 bottleneck passages. When these low-fitness clones were passaged many times as large virus populations, they always regained very high relative fitness. We conclude that transfer of large populations of RNA viruses regularly selects those genomes within the quasispecies population which have the highest relative fitness, whereas bottleneck transfers have a high probability of leading to loss of fitness by random isolation of genomes carrying debilitating mutations. Both phenomena arise from, and underscore, the extreme mutability and variability of RNA viruses.  相似文献   
12.
Continuous, persistent replication of a wild-type strain of vesicular stomatitis virus in cultured sandfly cells for 10 months profoundly decreased virus replicative fitness in mammalian cells and greatly increased fitness in sandfly cells. After persistent infection of sandfly cells, fitness was over 2,000,000-fold greater than that in mammalian cells, indicating extreme selective differences in the environmental conditions provided by insect and mammalian cells. The sandfly-adapted virus also showed extremely low fitness in mouse brain cells (comparable to that in mammalian cell cultures). It also showed an attenuated phenotype, requiring a nearly millionfold higher intracranial dose than that of its parent clone to kill mice. A single passage of this adapted virus in BHK-21 cells at 37 degrees C restored fitness to near neutrality and also restored mouse neurovirulence. These results clearly illustrate the enormous capacity of RNA viruses to adapt to changing selective environments.  相似文献   
13.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
14.
15.
16.

Oral mucositis is an inflammation of the oral mucosa mainly resulting from the cytotoxic effect of 5-fluorouracil (5-FU). The literature shows anti-inflammatory action of l-cysteine (l-cys) involving hydrogen sulfide (H2S). In view of these properties, we investigate the effect of l-cys in oral mucositis induced by 5-FU in hamsters. The animals were divided into the following groups: saline 0.9%, mechanical trauma, 5-FU 60–40 mg/kg, l-cys 10/40 mg and NaHS 27 µg/kg. 5-FU was administered on days 1st to 2nd; 4th day excoriations were made on the mucosa; 5th–6th received l-cys and NaHS. For data analysis, histological analyses, mast cell count, inflammatory and antioxidants markers, and immunohistochemistry (cyclooxygenase-2(COX-2)/inducible nitric oxide synthase (iNOs)/H2S) were performed. Results showed that l-cys decreased levels of inflammatory markers, mast cells, levels of COX-2, iNOS and increased levels of antioxidants markers and H2S when compared to the group 5-FU (p < 0.005). It is suggested that l-cys increases the H2S production with anti-inflammatory action in the 5-FU lesion.

  相似文献   
17.
18.
The metacommunity concept has the potential to integrate local and regional dynamics within a general community ecology framework. To this end, the concept must move beyond the discrete archetypes that have largely defined it (e.g. neutral vs. species sorting) and better incorporate local scale species interactions and coexistence mechanisms. Here, we present a fundamental reconception of the framework that explicitly links local coexistence theory to the spatial processes inherent to metacommunity theory, allowing for a continuous range of competitive community dynamics. These dynamics emerge from the three underlying processes that shape ecological communities: (1) density‐independent responses to abiotic conditions, (2) density‐dependent biotic interactions and (3) dispersal. Stochasticity is incorporated in the demographic realisation of each of these processes. We formalise this framework using a simulation model that explores a wide range of competitive metacommunity dynamics by varying the strength of the underlying processes. Using this model and framework, we show how existing theories, including the traditional metacommunity archetypes, are linked by this common set of processes. We then use the model to generate new hypotheses about how the three processes combine to interactively shape diversity, functioning and stability within metacommunities.  相似文献   
19.
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co‐evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short‐ and long‐term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.  相似文献   
20.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号