首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   10篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   16篇
  2012年   16篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1985年   1篇
  1981年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
91.
Formal monitoring of the Great Barrier Reef was initiated in 1986 in response to the clear scientific evidence (and growing public concern) over the loss of corals caused by two protracted outbreaks of crown-of thorns starfish, which began in 1962 and 1979. Using monitoring data from manta tows along and across the Great Barrier Reef, Sweatman et al. (Coral Reefs 30:521–531, 2011) show that coral cover after these outbreaks declined further from 28 to 22% between 1986 and 2004. Pointing to the current levels of protection of the Great Barrier Reef, they state that earlier estimates of losses of coral cover since the early 1960s have been exaggerated. However, the loss of close to one-quarter of the coral cover over the past two decades represents an average loss of 0.34% cover per year across the whole GBR after 1986, which is very similar to previously reported rates of annual loss measured over a longer timeframe. The heaviest recent losses have occurred on inshore and mid-shelf reefs, which Sweatman et al. (Coral Reefs 30:521–531, 2011) attribute to a natural cycle of disturbance and recovery. But there has been very limited recovery. While coral cover has increased for short periods on some individual reefs, it has declined sharply on many more to produce the observed system-wide trend of declining cover. Close to 40% of coral cover on inner reefs has been lost since 1986. Of particular significance is the new evidence that coral cover has remained unchanged or declined further from a low 1986 baseline in 28 out of 29 sub-regions of the Great Barrier Reef, indicating a gradual erosion of resilience that is impeding the capacity of this huge reef system to return towards its earlier condition. This result, and other clear evidence of widespread incremental degradation from overfishing, pollution, and climate change, calls for action rather than complacency or denial.  相似文献   
92.
Quantifying relative diver effects in underwater visual censuses   总被引:1,自引:0,他引:1  
Diver-based Underwater Visual Censuses (UVCs), particularly transect-based surveys, are key tools in the study of coral reef fish ecology. These techniques, however, have inherent problems that make it difficult to collect accurate numerical data. One of these problems is the diver effect (defined as the reaction of fish to a diver). Although widely recognised, its effects have yet to be quantified and the extent of taxonomic variation remains to be determined. We therefore examined relative diver effects on a reef fish assemblage on the Great Barrier Reef. Using common UVC methods, the recorded abundance of seven reef fish groups were significantly affected by the ongoing presence of SCUBA divers. Overall, the diver effect resulted in a 52% decrease in the mean number of individuals recorded, with declines of up to 70% in individual families. Although the diver effect appears to be a significant problem, UVCs remain a useful approach for quantifying spatial and temporal variation in relative fish abundances, especially if using methods that minimise the exposure of fishes to divers. Fixed distance transects using tapes or lines deployed by a second diver (or GPS-calibrated timed swims) would appear to maximise fish counts and minimise diver effects.  相似文献   
93.
Reviews in Fish Biology and Fisheries - As habitats change, highly specialised species may die or be forced to relocate. However, some obligate coral-dwelling damselfishes appear to survive the...  相似文献   
94.
Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes’ snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of “crevice-browser”: a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their potential to trigger macroalgal outbreaks.  相似文献   
95.
96.
Temporal origins of reef fishes in the Indo-Australian Archipelago were examined using wrasses in the genus Macropharyngodon. The genus was selected as it is morphologically and ecologically distinct, with strongly reef-associated species exhibiting discrete distributions across the Indo-Pacific. Phylogenetic relationships were explored using COI, 16S, and 12S rRNA mitochondrial sequences. Monophyly of the genus was supported by congruent Bayesian, maximum likelihood, and maximum parsimony trees. Estimates of lineage ages based on fossil-calibrated reef fish divergences suggest that Macropharyngodon had an extensive evolutionary history starting in the early Miocene. Repeated divergences of Indian Ocean-Pacific Ocean lineages appear to have occurred over at least 19 million years. Regional endemics represent both old and young clades. Our estimates of early Miocene origins, and mid-Miocene to Pliocene diversifications of Macropharyngodon are supported by recent studies of other reef fish genera, and emphasise the importance of pre-Pleistocene events in generating Indo-Pacific coral reef fish biodiversity.  相似文献   
97.
The association between diversification and evolutionary innovations has been well documented and tested in studies of taxonomic richness but the impact that such innovations have on the diversity of form and function is less well understood. Using phylogenetically rigorous techniques, we investigated the association between morphological diversity and two design breakthroughs within the jaws of parrotfish. Similar intramandibular joints and other modifications of the pharyngeal jaws have evolved repeatedly in teleost fish and are frequently hypothesized to promote diversity. We quantified morphological diversity within six functionally important oral jaw traits using the Brownian motion rate of evolution to correct for phylogenetic and time‐related biases and compared these rates across clades that did and did not possess the intramandibular joint and the parrotfish pharyngeal jaw. No change in morphological diversity was associated with the pharyngeal jaw modification alone but rates of oral jaw diversification were up to 8× faster in parrotfish species that possessed both innovations. Interestingly, this morphological diversity may not have led to differential resource uses as available data suggest that members of this clade show remarkable homogeneity of diet.  相似文献   
98.
The Indo-Australian Archipelago supports the world's richest coral reef biodiversity hotspot. Traditional hypotheses that account for such exceptional biodiversity have highlighted the importance of environmental variables such as habitat area and energy input. Recently, however, an additional explanation has been proposed based on geometric constraints in the placement of geographical ranges within a bounded domain, which cause a mid-domain peak in species richness; the mid-domain effect (MDE). Here, for the first time, we examine the relative importance of area, energy and MDE jointly on species richness patterns. Model selection indicates that the best model incorporates MDE and reef area, but no energy effect; moreover, this best-fit model captures all major features of reef fish and coral species richness patterns. Habitat area is the major environmental factor influencing species richness. The prevention of further fragmentation and loss of habitat area is of critical importance for the conservation of coral reef biodiversity.  相似文献   
99.
Herbivorous fishes are a key functional group on coral reefs. These fishes are central to the capacity of reefs to resist phase shifts and regenerate after disturbance. Despite this importance few studies have quantified the direct impact of these fishes on coral reefs. In this study the roles of parrotfishes, a ubiquitous group of herbivorous fishes, were examined on reefs in the northern Great Barrier Reef. The distribution of 24 species of parrotfish was quantified on three reefs in each of three cross-shelf regions. Functional roles (grazing, erosion, coral predation and sediment reworking) were calculated as the product of fish density, bite area or volume, bite rate, and the proportion of bites taken from various substrata. Inner-shelf reefs supported high densities but low biomass of parrotfishes, with high rates of grazing and sediment reworking. In contrast, outer-shelf reefs were characterised by low densities and high biomass of parrotfish, with high rates of erosion and coral predation. Mid-shelf reefs displayed moderate levels of all roles examined. The majority of this variation in functional roles was attributable to just two species. Despite being rare, Bolbometopon muricatum, the largest parrotfish species, accounted for 87.5% of the erosion and 99.5% of the coral predation on outer-shelf reefs. B. muricatum displayed little evidence of selectivity of feeding, with most substrata being consumed in proportion to their availability. In contrast, the high density of Scarus rivulatus accounted for over 70% of the total grazing and sediment reworking on inner-shelf reefs. This marked variation in the roles of parrotfishes across the continental shelf suggests that each shelf system is shaped by fundamentally different processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号