首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   9篇
  155篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   16篇
  2012年   16篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1985年   1篇
  1981年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
81.
82.
We examine the effects of different biogeographic histories on assemblage composition in three major marine habitats in two biogeographically distinct marine realms. Specifically, we quantify the taxonomic and functional composition of fish assemblages that characterise coral reef, seagrass and mangrove habitats, to explore the potential effects of biogeographic history and environment on assemblage composition. The three habitats were surveyed in the Caribbean and on the Great Barrier Reef using a standardised underwater visual census method to record fish size and abundance data. The taxonomic composition of assemblages followed biogeographic expectations, with realm‐specific family‐level compositions. In marked contrast, the functional composition of assemblages separated habitats regardless of their biogeographic locations. In essence, taxonomy characterises biogeographic realms while functional groups characterise habitats. The Caribbean and Indo‐West Pacific have been separated for approximately 15 million years. The two realms have different taxonomic structures which reflect this extended separation, however, the three dominant shallow‐water marine habitats all retain distinct functional characteristics: seagrass fishes are functionally similar regardless of their taxonomic composition or biogeographic location. Likewise, for coral reefs and mangroves. The results emphasise the advantages and limitations of taxonomic vs. functional metrics in evaluating patterns. Taxonomy primarily reflects biogeographic and evolutionary history while functional characteristics may better reflect ecological constraints.  相似文献   
83.
Coral reefs worldwide are under threat from various anthropogenic factors, including overfishing and pollution. A new study by Mumby et al. highlights the trophic relationships between humans, carnivorous and herbivorous fishes, and the potential role of no-take areas in maintaining vulnerable coral reef ecosystems. No-take areas, where fishing is prohibited, are vital tools for managing food webs, ecosystem function and the resilience of reefs, in a seascape setting that extends far beyond the boundaries of the reefs themselves.  相似文献   
84.
In a recent paper (Bellwood & Meyer, Journal of Biogeography , 2009, 36 , 569–576), we critically evaluated the utility of marine endemics for marking the geographical origins of species. In reply, Briggs (2009) identified two issues that needed clarification: (1) whether endemics are assumed to mark the geographical origins of species or areas of exceptionally high rates of origination, and (2) whether our evaluation of the role of endemics disproves the centre of origin hypothesis. Of these two issues, the first can be clearly resolved by recourse to the original literature that explicitly states that it has been assumed that endemics do indeed mark the probable sites of origin of species. The second is equally clear: our evidence does not and can not disprove the centre of origin theory. We suggest, however, that the current data, and endemics in particular, provide limited support for centre of origin theories and that they are more consistent with some centre of accumulation theories. The Indo-Australian Archipelago (IAA; Coral Triangle) therefore appears to be an area where species persist, a centre of survival, regardless of the site of origin of species.  相似文献   
85.
Remote monitoring technologies are increasingly being implemented in the marine environment to better understand the movement patterns of taxa. Coral reefs are no exception. However, there is a paucity of information relating to the performance of acoustic receivers on coral reefs. Our results suggest that the detection performance of acoustic receivers may be significantly impacted by the unique nature of the reef environment. This study assessed the performance of passive acoustic receivers on a typical inner-shelf fringing reef, Orpheus Island, on the Great Barrier Reef, Australia. The detection range and diel performance variability of acoustic receivers was assessed using two parallel lines of 5 VR2W receivers spanning 125?m, deployed on the reef base and reef crest. Two 9-mm acoustic transmitters were moored at opposite ends of each receiver line. The working detection range for receivers was found to be approximately 90?m for the transmitter moored on the reef base and just 60?m for the transmitter moored on the reef crest. However, the detection range on the reef crest increased to 90?m when just the reef crest receivers were considered, highlighting importance of optimal receiver deployment. No diel patterns in receiver performance or detection capacities were detected, suggesting that no corrections are required when interpreting nocturnal versus diurnal activity patterns. We suggest that studies aiming for complete coverage of a site within a reef environment will require receivers in close (<100?m) proximity, and that the placement depth of receivers must be a major consideration, with shallow receivers exhibiting a greater detection range than those on the reef slope. Our results highlight the challenges imposed by coral reefs for acoustic telemetry and the importance of receiver placement for studies conducted within these habitats.  相似文献   
86.
We examined how peripherally isolated endemic species may have contributed to the biodiversity of the Indo-Australian Archipelago biodiversity hotspot by reconstructing the evolutionary history of the wrasse genus Anampses. We identified three alternate models of diversification: the vicariance-based 'successive division' model, and the dispersal-based 'successive colonisation' and 'peripheral budding' models. The genus was well suited for this study given its relatively high proportion (42%) of endemic species, its reasonably low diversity (12 species), which permitted complete taxon sampling, and its widespread tropical Indo-Pacific distribution. Monophyly of the genus was strongly supported by three phylogenetic analyses: maximum parsimony, maximum likelihood, and Bayesian inference based on mitochondrial CO1 and 12S rRNA and nuclear S7 sequences. Estimates of species divergence times from fossil-calibrated Bayesian inference suggest that Anampses arose in the mid-Eocene and subsequently diversified throughout the Miocene. Evolutionary relationships within the genus, combined with limited spatial and temporal concordance among endemics, offer support for all three alternate models of diversification. Our findings emphasise the importance of peripherally isolated locations in creating and maintaining endemic species and their contribution to the biodiversity of the Indo-Australian Archipelago.  相似文献   
87.
New paradigms for supporting the resilience of marine ecosystems   总被引:26,自引:0,他引:26  
Resource managers and scientists from disparate disciplines are rising to the challenge of understanding and moderating human impacts on marine ecosystems. Traditional barriers to communication between marine ecologists, fisheries biologists, social scientists and economists are beginning to break down, and the distinction between applied and basic research is fading. These ongoing trends arise, in part, from an increasing awareness of the profound influence of people on the functioning of all marine ecosystems, an increased focus on spatial and temporal scale, and a renewed assessment of the role of biodiversity in the sustainability of ecosystem goods and services upon which human societies depend. Here, we highlight the emergence of a complex systems approach for sustaining and repairing marine ecosystems, linking ecological resilience to governance structures, economics and society.  相似文献   
88.
Coral Reefs - Coral reefs around the world are changing rapidly, with overfishing of herbivorous fishes and increased sediment inputs being two of the major local-scale stressors. We therefore...  相似文献   
89.
The disparity in species richness among evolutionary lineages is one of the oldest and most intriguing issues in evolutionary biology. Although geographical factors have been traditionally thought to promote speciation, recent studies have underscored the importance of ecological interactions as one of the main drivers of diversification. Here, we test if differences in species richness of closely related lineages match predictions based on the concept of density-dependent diversification. As radiation progresses, ecological niche-space would become increasingly saturated, resulting in fewer opportunities for speciation. To assess this hypothesis, we tested whether reef fish niche shifts toward usage of low-quality food resources (i.e. relatively low energy/protein per unit mass), such as algae, detritus, sponges and corals are accompanied by rapid net diversification. Using available molecular information, we reconstructed phylogenies of four major reef fish clades (Acanthuroidei, Chaetodontidae, Labridae and Pomacentridae) to estimate the timing of radiations of their subclades. We found that the evolution of species-rich clades was associated with a switch to low quality food in three of the four clades analyzed, which is consistent with a density-dependent model of diversification. We suggest that ecological opportunity may play an important role in understanding the diversification of reef-fish lineages.  相似文献   
90.
Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号