首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   13篇
  238篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   13篇
  2012年   12篇
  2011年   18篇
  2010年   8篇
  2009年   8篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   11篇
  1998年   4篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   8篇
  1980年   1篇
  1979年   11篇
  1978年   12篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   2篇
  1969年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
81.
AIM: A growing number of mutations mapped in the receptor gene for fibroblast growth factor have been implicated in several cranial development disorders including the Apert and Crouzon syndromes. The present paper investigated cellular mechanisms underlying Apert phenotype, by analyzing the effects of FGF2 in primary cultures of Apert periosteal fibroblasts carrying the FGFR2 Pro253Arg mutation. RESULTS: FGF2 administration significantly decreased extracellular matrix production in mutant cells by stimulating degradative enzymatic activities. Gene expression analysis revealed that decorin and biglycan, two proteoglycans involved in collagen fibrillogenesis, were more expressed in mutant cells and down-regulated by FGF2. FGF2 receptor binding showed little differences in high affinity receptor counts between mutant and wild-type cells, while we showed for the first time that low affinity receptors are significantly fewer in mutant cells. Differences were found in Crouzon syndrome, where both high and low affinity receptor counts were up-regulated. CONCLUSIONS: The different mutation and low affinity receptor regulation in mutant receptors support the hypothesis that the impact on the activity of the ligand-receptor complex could allow distinct modes of FGF2 activation in Apert and Crouzon syndromes, which interfere with the FGFR2 signalling cascade.  相似文献   
82.
Although many secondary metabolites with diverse biological activities have been isolated from myxobacteria, most strains of these biotechnologically important gliding prokaryotes remain difficult to handle genetically. In this study we describe the new fast growing myxobacterial thermophilic isolate GT-2 as a heterologous host for the expression of natural product biosynthetic pathways isolated from other myxobacteria. According to the results of sequence analysis of the 16S rDNA, this moderately thermophilic isolate is closely related to Corallococcus macrosporus and was therefore named C. macrosporus GT-2. Fast growth of moderately thermophilic strains results in shorter fermentation and generation times, aspects which are of significant interest for molecular biological work as well as production of secondary metabolites. Development of a genetic manipulation system allowed the introduction of the complete myxochromide biosynthetic gene cluster, located on a transposable fragment, into the chromosome of GT-2. Genetic engineering of the biosynthetic gene cluster by promoter exchange leads to much higher production of myxochromides in the heterologous host C. macrosporus GT-2 in comparison to the original producer Stigmatella aurantiaca and to the previously described heterologous host Pseudomonas putida (600 mg/L versus 8 mg/L and 40 mg/L, respectively).  相似文献   
83.
Wild legumes constitute an important component of widespread pastures in the Mediterranean basin. This region is experiencing remarkable effects from climate change, and continuous monitoring of species and population dynamics is important in order to plan and enact valuable conservation programmes. Tripodion tetraphyllum (L.) Fourr. [=Anthyllis tetraphylla L.] (2n=16), belongs to the tribe Loteae (Fabaceae), and could be very important for soil protection and sward improvement in abandoned or degraded Mediterranean areas. This alternative pasture legume is very closely related to Lotus japonicus and has some important characteristics for survival of the species in difficult and overgrazed Mediterranean areas. In this study, we have investigated the molecular diversity and population structure of T. tetraphyllum from North Africa using ISSR markers and plastidial microsatellites. To date, this is the first study concerning the genetic diversity and geographic differentiation of T. tetraphyllum. Ninety genotypes from three North African countries were analysed according to ISSRs, cpSSRs and one phenotypic trait. T. tetraphyllum shows a clear geographical structure, with differentiation associated with longitudinal differences; moreover, there is a general reduction in genetic diversity from Morocco to Tunisia. With all the markers used, strong differentiation was seen among collection sites. Our data highlight a genetic diversity gradient and cline of distribution, indicating that T. tetraphyllum has extended its area of distribution from Morocco to Tunisia.  相似文献   
84.
Plant Cell, Tissue and Organ Culture (PCTOC) - New selection systems are required to extend plastid transformation to a more significant number of plant species. After demonstrating that a...  相似文献   
85.
The behaviour of sodium transport systems across the cell membrane has been poorly investigated in elderly hypertension. Sodium efflux driven by Na+/K+/Cl-cotransport activity was therefore investigated (using a novel NMR-spectroscopy method) in 5 elderly hypertensive males (mean age 78 +/- 5 years) and 5 normotensive controls (mean age 79 +/- 3 years). In order to exclude any change in cotransport activity secondary to metabolic abnormalities, both patients and controls were non-obese and had normal glucose and lipid metabolisms. The Na+/K+/Cl-cotransport evaluation was performed after three months of pharmacological wash-out, under a diet containing 120 mEq of Na+/day. The resulting data showed that Na+ efflux due to outward Na+/K+/Cl-cotransport was higher in hypertensive group than in the normotensive one (0.50 +/- 0.10 mmol Na+/l cells/hr. vs 0.33 +/- 0.03 mmol Na+/l cells/hr., respectively, p < 0.05). Intracellular Na+ content was similar in both groups. At variance with previous data from the literature, our findings indicate that the Na+/K+/Cl-cotransport activity is elevated in elderly hypertensives.  相似文献   
86.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   
87.

Background  

The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes.  相似文献   
88.

Introduction

The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs.

Methods

Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR.

Results

Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs.

Conclusions

Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.  相似文献   
89.
Genetic engineering is becoming a useful tool in the improvement of plants but concern has been expressed about the potential environmental risks of releasing genetically modified (GM) organisms into the environment. Attention has focused on pollen dispersal as a major issue in the risk assessment of transgenic crop plants. In this study, pollen-mediated dispersal of transgenes via cross-fertilization was examined. Plants of Lotus corniculatus L. transformed with either the Escherichia coli asparagine synthetase gene asnA or the beta-glucuronidase gene uidA, were used as the pollen donor. Nontransgenic plants belonging to the species L. corniculatus L., L. tenuis Waldst. and Kit. ex Willd, and L. pedunculatus Cav., were utilized as recipients. Two experimental fields were established in two areas of central Italy. Plants carrying the uidA gene were partially sterile, therefore only the asnA gene was used as a tracer marker. No transgene flow between L. corniculatus transformants and the nontransgenic L. tenuis and L. pedunculatus plants was detected. As regards nontransgenic L. corniculatus plants, in one location flow of asnA transgene was detected up to 18 m from the 1.8 m2 donor plot. In the other location, pollen dispersal occurred up to 120 m from the 14 m2 pollinating plot.  相似文献   
90.
Relatively few studies have extensively analysed the genetic diversity of the runner bean through molecular markers. Here, we used six chloroplast microsatellites (cpSSRs) to investigate the cytoplasmic diversity of 331 European domesticated accessions of the scarlet runner bean (Phaseolus coccineus L.), including the botanical varieties albiflorus, bicolor and coccineus, and a sample of 49 domesticated and wild accessions from Mesoamerica. We further explored the pattern of diversity of the European landraces using 12 phenotypic traits on 262 individuals. For 158 European accessions, we studied the relationships between cpSSR polymorphisms and phenotypic traits. Additionally, to gain insights into the role of gene flow and migration, for a subset of 115 accessions, we compared and contrasted the results obtained by cpSSRs and phenotypic traits with those obtained in a previous study with 12 nuclear microsatellites (nuSSRs). Our results suggest that both demographic and selective factors have roles in the shaping of the population genetic structure of the European runner bean. In particular, we infer the existence of a moderate-to-strong cytoplasmic bottleneck that followed the expansion of the crop into Europe, and we deduce multiple domestication events for this species. We also observe an adaptive population differentiation in the phenology across a latitudinal gradient, which suggests that selection led to the diversification of the runner bean in Europe. The botanical varieties albiflorus, bicolor and coccineus, which are based solely on flower colour, cannot be distinguished based on these cpSSRs and nuSSRs, nor according to the 12 quantitative traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号