首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   26篇
  206篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   29篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   6篇
  2005年   13篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1992年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1982年   2篇
  1978年   2篇
  1975年   2篇
  1971年   2篇
  1915年   2篇
  1914年   1篇
  1909年   1篇
  1902年   1篇
  1901年   1篇
  1897年   2篇
  1892年   1篇
  1891年   1篇
  1889年   1篇
  1888年   1篇
  1887年   1篇
  1883年   3篇
  1882年   5篇
  1881年   2篇
  1880年   1篇
  1879年   6篇
  1878年   2篇
  1877年   2篇
  1876年   1篇
排序方式: 共有206条查询结果,搜索用时 0 毫秒
21.
22.

Background  

Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used.  相似文献   
23.

Background  

Profile hidden Markov model (HMM) techniques are among the most powerful methods for protein homology detection. Yet, the critical features for successful modelling are not fully known. In the present work we approached this by using two of the most popular HMM packages: SAM and HMMER. The programs' abilities to build models and score sequences were compared on a SCOP/Pfam based test set. The comparison was done separately for local and global HMM scoring.  相似文献   
24.
In wetland habitats, periphyton is a common component of open‐water areas with species assemblage determined by local water quality. Extracellular polymeric substances (EPS) secreted by algae and bacteria give structure to periphyton, and differences in EPS chemistry affect the functional roles of these polymers. The Florida Everglades provide a unique opportunity to study compositional differences of EPS from distinctive algal assemblages that characterize areas of differing water chemistry. Water conservation area (WCA)‐1 is a soft‐water impoundment; periphyton was loosely associated with Utricularia stems and amorphous in structure, with a diverse desmid and diatom assemblage, and varying cyanobacterial abundance. Extracellular polymers were abundant and were loosely cell‐associated sheaths and slime layers in addition to tightly cell‐associated capsules. The EPS were complex heteropolysaccharides with significant saccharide residues of glucose, xylose, arabinose, and fucose. Carboxylic acids were also prominent, while ester sulfates and proteins were small components. Structured, cohesive cyanobacteria‐dominated periphyton was observed in WCA‐2A, a minerotrophic impoundment, and filaments were heavily encrusted with calcium carbonate and detrital matter. EPS were primarily cell‐associated sheaths, and polymer residues were dominated by glucose, xylose, fucose, and galactose, with uronic acids also a significant component of the polymers. Principal components analysis revealed that periphyton community assemblage determined the monosaccharide composition of EPS, which ultimately determines a range of biogeochemical processes within the periphyton.  相似文献   
25.
Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.  相似文献   
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号