首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   48篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   11篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   6篇
  2006年   11篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   8篇
  2001年   9篇
  2000年   8篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1992年   6篇
  1991年   4篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1977年   3篇
  1974年   6篇
  1973年   3篇
  1970年   2篇
  1966年   2篇
  1963年   2篇
  1962年   2篇
  1960年   2篇
  1955年   2篇
  1949年   2篇
  1948年   2篇
  1933年   2篇
  1912年   2篇
  1908年   2篇
排序方式: 共有262条查询结果,搜索用时 187 毫秒
21.
22.
23.
The diversity of reaction mechanisms employed by Type II restriction enzymes was investigated by analysing the reactions of seven endonucleases at the same DNA sequence. NarI, KasI, Mly113I, SfoI, EgeI, EheI and BbeI cleave DNA at several different positions in the sequence 5′-GGCGCC-3′. Their reactions on plasmids with one or two copies of this sequence revealed five distinct mechanisms. These differ in terms of the number of sites the enzyme binds, and the number of phosphodiester bonds cleaved per turnover. NarI binds two sites, but cleaves only one bond per DNA-binding event. KasI also cuts only one bond per turnover but acts at individual sites, preferring intact to nicked sites. Mly113I cuts both strands of its recognition sites, but shows full activity only when bound to two sites, which are then cleaved concertedly. SfoI, EgeI and EheI cut both strands at individual sites, in the manner historically considered as normal for Type II enzymes. Finally, BbeI displays an absolute requirement for two sites in close physical proximity, which are cleaved concertedly. The range of reaction mechanisms for restriction enzymes is thus larger than commonly imagined, as is the number of enzymes needing two recognition sites.  相似文献   
24.
Nitric oxide (NO) signal transduction may involve at least two targets: the guanylyl cyclase-coupled NO receptor (NO(GC)R), which catalyzes cGMP formation, and cytochrome c oxidase, which is responsible for mitochondrial O(2) consumption and which is inhibited by NO in competition with O(2). Current evidence indicates that the two targets may be similarly sensitive to NO, but quantitative comparison has been difficult because of an inability to administer NO in known, constant concentrations. We addressed this deficiency and found that purified NO(GC)R was about 100-fold more sensitive to NO than reported previously, 50% of maximal activity requiring only 4 nm NO. Conversely, at physiological O(2) concentrations (20-30 microM), mitochondrial respiration was 2-10-fold less sensitive to NO than estimated beforehand. The two concentration-response curves showed minimal overlap. Accordingly, an NO concentration maximally active on the NO(GC)R (20 nm) inhibited respiration only when the O(2) concentration was pathologically low (50% inhibition at 5 microM O(2)). Studies on brain slices under conditions of maximal stimulation of endogenous NO synthesis suggested that the local NO concentration did not rise above 4 nm. It is concluded that under physiological conditions, at least in brain, NO is constrained to target the NO(GC)R without inhibiting mitochondrial respiration.  相似文献   
25.
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO), and so mediates a wide range of effects (e.g. vasodilatation, platelet disaggregation and neural signalling) through the accumulation of cGMP and the engagement of various downstream targets, such as protein kinases and ion channels. Until recently, our understanding of sGC functioning has been derived exclusively from studies of the enzyme in tissue homogenates or in its purified form. Here, NO binds to the haem prosthetic group of sGC, triggering a conformational change and a large increase in catalytic activity. The potency (EC50) of NO appears to be about 100–200 nM. The rate of activation of sGC by NO is rapid (milliseconds) and, in the presence of excess substrate, cGMP is formed at a constant rate; on removal of NO, sGC deactivates slowly (seconds–minutes). Recent investigation of the way that sGC behaves in its natural environment, within cells, has revealed several key differences. For example, the enzyme exhibits a rapidly desensitizing profile of activity; the potency of NO is 45 nM for the minimally-desensitized enzyme but becomes higher with time; deactivation of sGC on removal of NO is 25-fold faster than the fastest estimate for purified sGC. Overall, within cells, sGC behaves in a way that is analogous to the way that classical neurotransmitter receptors operate. The properties of cellular sGC have important implications for the understanding of NO-cGMP signalling. For example, the dynamics of the enzyme means that fluctuations in the rate of NO formation, even on subsecond time scale, will result in closely synchronized sGC activity in neighbouring cells; desensitization of sGC provides an economical way of generating a cellular cGMP signal and, in concert with phosphodiesterases, provides the basis for cGMP signal diversity, allowing different targets (outputs) to be selected from a common input (NO). Thus, despite exhibiting only limited molecular heterogeneity, cellular sGC functions in a way that introduces speed, complexity, and versatility into NO-cGMP signalling pathways.  相似文献   
26.
Evidence for linkage between tuberculosis and human chromosomal region Xq26 has previously been described. The costimulatory molecule CD40 ligand, encoded by TNFSF5 and located at Xq26.3, is a promising positional candidate. Interactions between CD40 ligand and CD40 are involved in the development of humoral- and cell-mediated immunity, as well as the activation of macrophages, which are the primary host and effector cells for Mycobacterium tuberculosis. We hypothesised that common variation within TNFSF5 might affect susceptibility to tuberculosis disease and, thus, might be responsible for the observed linkage to Xq26. Sequencing 32 chromosomes from a Gambian population identified nine common polymorphisms within the coding, 3 and 5 regulatory sequences of the gene. Six single nucleotide polymorphisms (SNPs) and a 3 microsatellite were genotyped in 121 tuberculosis patients and their available parents. No association with tuberculosis was detected for these variants using a transmission disequilibrium test, although one SNP at –726 showed some evidence of association in males. This finding, however, did not replicate in a separate case control study of over 1,200 West African individuals. We conclude that common genetic variation in TNFSF5 is not likely to affect tuberculosis susceptibility in West Africa and the linkage observed in this region is not due to variation in TNFSF5.Sadly, Professor Steve Bennett passed away in March 2003  相似文献   
27.
28.
This article presents the response of Carol Bellamy, executive director of the UN International Children's Emergency Fund (UNICEF), to the article by Yamey about the alliances UNICEF is seeking to form with manufacturers of infant formula that do not comply with the international code of marketing of breast milk substitutes. Bellamy confirms that UNICEF will continue to refuse donations from manufacturers of infant formula whose marketing practices violate this code and subsequent World Health Assembly resolutions. It is noted that there has been considerable discussion within the organization regarding this issue. This emerged when UNICEF participated in discussions with five large pharmaceutical companies on the possibility of obtaining various drugs to fight HIV/AIDS at discounted prices on behalf of developing countries. One of these companies is widely viewed as violating the code. This has been misinterpreted as a sign that UNICEF is weakening its support for breast-feeding and the code. However, Bellamy indicates that UNICEF believes that in the face of AIDS, their support for breast-feeding must be strengthened, not diminished. At the same time, UNICEF will uphold its support of the code and will continue to call violators of the code to account publicly.  相似文献   
29.
An amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized. The structures of the first orthorhombic and the trigonal form were determined by seleno-methionine multiwavelength anomalous dispersion, and the structure of the second orthorhombic form was determined by molecular replacement using the structure from the trigonal form as a search model. A combination of modern experimental and computational techniques provided high-quality electron-density maps, which revealed new features of the apolipoprotein E structure, including an unambiguously traced loop connecting helices 2 and 3 in the four-helix bundle and a number of multiconformation side chains. The three crystal forms contain a common intermolecular, antiparallel packing arrangement. The electrostatic complimentarity observed in this antiparallel packing resembles the interaction of apolipoprotein E with the monoclonal antibody 2E8 and the low density lipoprotein receptor. Superposition of the model structures from all three crystal forms reveals flexibility and pronounced kinks in helices near one end of the four-helix bundle. This mobility at one end of the molecule provides new insights into the structural changes in apolipoprotein E that occur with lipid association.  相似文献   
30.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号