全文获取类型
收费全文 | 108篇 |
免费 | 8篇 |
国内免费 | 4篇 |
专业分类
120篇 |
出版年
2022年 | 3篇 |
2020年 | 2篇 |
2018年 | 6篇 |
2017年 | 4篇 |
2016年 | 7篇 |
2015年 | 11篇 |
2014年 | 13篇 |
2013年 | 3篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 5篇 |
2009年 | 7篇 |
2008年 | 2篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 7篇 |
2004年 | 6篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 5篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1983年 | 4篇 |
1978年 | 2篇 |
1973年 | 1篇 |
排序方式: 共有120条查询结果,搜索用时 15 毫秒
91.
92.
Rhizobacteria that produce auxins and contain 1‐amino‐cyclopropane‐1‐carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well‐watered and water‐limited potato (Solanum tuberosum) 下载免费PDF全文
A.A. Belimov I.C. Dodd V.I. Safronova A.I. Shaposhnikov T.S. Azarova N.M. Makarova W.J. Davies I.A. Tikhonovich 《The Annals of applied biology》2015,167(1):11-25
Plant‐growth‐promoting rhizobacteria (PGPR) utilise amino acids exuded from plant root systems, but hitherto there have been no direct measurements of rhizosphere concentrations of the amino acid 1‐amino‐cyclopropane‐1‐carboxylic acid (ACC) following inoculation with PGPR containing the enzyme ACC deaminase. When introduced to the rhizosphere of two potato (Solanum tuberosum) cultivars (cv. Swift and cv. Nevsky), various ACC deaminase containing rhizobacteria (Achromobacter xylosoxidans Cm4, Pseudomonas oryzihabitans Ep4 and Variovorax paradoxus 5C‐2) not only decreased rhizosphere ACC concentrations but also decreased concentrations of several proteinogenic amino acids (glutamic acid, histidine, isoleucine, leucine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine). These effects were not always correlated with the ability of the bacteria to metabolise these compounds in vitro, suggesting bacterial mediation of root amino acid exudation. All rhizobacteria showed similar root colonisation following inoculation of sand cultures, thus species differences in amino acid utilisation profiles apparently did not confer any selective advantage in the potato rhizosphere. Rhizobacterial inoculation increased root biomass (by up to 50%) and tuber yield (by up to 40%) in pot trials, and tuber yield (by up to 27%) in field experiments, especially when plants were grown under water‐limited conditions. Nevertheless, inoculated and control plants showed similar leaf water relations, indicating that alternative mechanisms (regulation of phytohormone balance) were responsible for growth promotion. Rhizobacteria generally increased tuber number more than individual tuber weight, suggesting that accelerated vegetative development was responsible for increased yield. 相似文献
93.
Yuliya V. Kuzmicheva Aleksander I. Shaposhnikov Svetlana N. Petrova Natalia M. Makarova Irina L. Tychinskaya Jan V. Puhalsky Nikolay V. Parahin Igor A. Tikhonovich Andrey A. Belimov 《Plant and Soil》2017,413(1-2):83-95
Aims
It has been increasingly recognized that only distal lower order roots turn over actively within the <2 mm fine root system of trees. This study aimed to estimate fine root production and turnover rate based on lower order fine roots and their relations to soil variables in mangroves.Methods
We conducted sequential coring in five natural mangrove forests at Dongzhai Bay, China. Annual fine root production and turnover rate were calculated based on the seasonal variations of the biomass and necromass of lower order roots or the whole fine root system.Results
Annual fine root production and turnover rate ranged between 571 and 2838 g m?2 and 1.46–5.96 yr?1, respectively, estimated with lower order roots, and they were increased by 0–30 % and reduced by 13–48 %, respectively, estimated with the whole fine root system. Annual fine root production was 1–3.5 times higher than aboveground litter production and was positively related to soil carbon, nitrogen and phosphorus concentrations. Fine root turnover rate was negatively related to soil salinity.Conclusions
Mangrove fine root turnover plays a more important role than aboveground litter production in soil C accumulation. Sites with higher soil nutrients and lower salinity favor fine root production and turnover, and thus favor soil C accumulation.94.
Background
Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity). 相似文献95.
JB Farinha DL Dos Santos G Bresciani LF Bard F de Mello ST Stefanello AA Courtes FAA Soares 《Biology of sport / Institute of Sport》2015,32(2):109-114
The aim of this study was to investigate the impact of moderate aerobic training on functional, anthropometric, biochemical, and health-related quality of life (HRQOL) parameters on women with metabolic syndrome (MS). Fifteen untrained women with MS performed moderate aerobic training for 15 weeks, without modifications of dietary behaviours. Functional, anthropometric, biochemical, control diet record and HRQOL parameters were assessed before and after the training. Despite body weight maintenance, the patients presented decreases in waist circumference (P = 0.001), number of MS components (P = 0.014), total cholesterol (P = 0.049), HDL cholesterol (P = 0.004), LDL cholesterol (P = 0.027), myeloperoxidase activity (P = 0.002) and thiobarbituric acid-reactive substances levels (P = 0.006). There were no differences in total energy, carbohydrate, protein and lipid intake pre- and post-training. Furthermore, improvements in the HRQOL subscales of physical functioning (P = 0.03), role-physical (P = 0.039), bodily pain (P = 0.048), general health (P = 0.046) and social functioning scoring (P = 0.011) were reported. Despite the absence of weight loss, aerobic training induced beneficial effects on functional, anthropometric, biochemical and HRQOL parameters in women with MS. 相似文献
96.
Sajin Bae Cornelia M Ulrich Lynn B Bailey Olga Malysheva Elissa C Brown David R Maneval Marian L Neuhouser Ting-Yuan David Cheng Joshua W Miller Yingye Zheng Liren Xiao Lifang Hou Xiaoling Song Katharina Buck Shirley AA Beresford Marie A Caudill 《Epigenetics》2014,9(3):396-403
DNA methylation is an epigenetic mechanism that regulates gene expression and can be modified by one-carbon nutrients. The objective of this study was to investigate the impact of folic acid (FA) fortification of the US food supply on leukocyte global DNA methylation and the relationship between DNA methylation, red blood cell (RBC) folate, and other one-carbon biomarkers among postmenopausal women enrolled in the Women's Health Initiative Observational Study. We selected 408 women from the highest and lowest tertiles of RBC folate distribution matching on age and timing of the baseline blood draw, which spanned the pre- (1994–1995), peri- (1996–1997), or post-fortification (1998) periods. Global DNA methylation was assessed by liquid chromatography-tandem mass spectrometry and expressed as a percentage of total cytosine. We observed an interaction (P = 0.02) between fortification period and RBC folate in relation to DNA methylation. Women with higher (vs. lower) RBC folate had higher mean DNA methylation (5.12 vs. 4.99%; P = 0.05) in the pre-fortification period, but lower (4.95 vs. 5.16%; P = 0.03) DNA methylation in the post-fortification period. We also observed significant correlations between one-carbon biomarkers and DNA methylation in the pre-fortification period, but not in the peri- or post-fortification period. The correlation between plasma homocysteine and DNA methylation was reversed from an inverse relationship during the pre-fortification period to a positive relationship during the post-fortification period. Our data suggest that (1) during FA fortification, higher RBC folate status is associated with a reduction in leukocyte global DNA methylation among postmenopausal women and; (2) the relationship between one-carbon biomarkers and global DNA methylation is dependent on folate availability. 相似文献
97.
Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria
Pot experiments were carried out to investigate the effect of inoculation with pure and mixed cultures of nitrogen fixers Azospirillum lipoferum 137, Arthrobacter mysorens 7 and the phosphate-solubilizing strain Agrobacterium radiobacter 10 on growth and mineral nutrition of two barley cultivars. A significant positive effect on grain yield both of the studied barley cultivars was obtained after inoculation with mixtures of A. lipoferum 137 + A. radiobacter 10 and A. lipoferum 137 + A. mysorens 7 only. The acetylene reduction activity on roots or in batch culture was significantly higher when A. lipoferum 137 and A. radiobacter 10 were combined. Using 15N isotope dilution technique it was established that these mixed cultures significantly increased the accumulation of nitrogen fertilizer in the plants. The strain A. radiobacter 10 promoted a better accumulation of phosphorus fertilizer by plants and A. mysorens 7 increased the total phosphorus content in plant tissues. The maximum positive effect of joint inoculation on plant development was observed when the combined nitrogen in soil was in short supply. It was concluded that inoculation with bacterial mixtures provided a more balanced nutrition for the plants and the improvement in root uptake of nitrogen and phosphorus was the major mechanism of interaction between plants and bacteria. The introduced bacteria were able to colonize actively the rhizoplane of barley. No interspecific competition or antagonism were established between components of the bacterial mixtures in the rhizoplane. The strains A. mysorens 7 and A. radiobacter 10 improved viability of A. lipoferum 137 when the plants were grown in acid soil. Field experiments carried out on 3 barley cultivars confirmed the assertion that inoculation with mixed cultures significantly increases the grain yield and nitrogenous nutrition of plants as compared with single cultures. 相似文献
98.
Andrey A. Belimov Vera I. Safronova Svetlana V. Demchinskaya Oksana O. Dzyuba 《Acta Physiologiae Plantarum》2007,29(5):473-478
Indian mustard (Brassica juncea (L.) Czern.) is a promising plant species for phytoremediation of heavy metal polluted soils. However, genetic variability
of metal tolerance in Indian mustard has not been studied. We evaluated intraspecific variation of Cd tolerance of this species
by screening 64 varieties in hydroponics. The tolerance index (TI), calculated as percentage of root length of Cd-treated
(7 μM CdCl2) over untreated control seedlings, significantly varied from 34 to 79%, depending on the variety. Information about phenotypic
and economic traits of the studied varieties was taken from the literature and subjected to a cluster analysis. The varieties
were distributed into three clusters and most of the varieties characterized by the highest TI values (TI > 65%) were grouped
together in one cluster. Moreover, TI negatively correlated with the following characteristics: yellow seed colour (R = −0.35, P = 0.005), total oil content (R = −0.33, P = 0.008), oleic acid (R = −0.25, P = 0.047) and linoleic acid (R = −0.36, P = 0.004) contents in seeds. The results showed the presence of significant variability for Cd tolerance in Indian mustard.
The knowledge about correlations between Cd tolerance and phenotypic characteristics of plants might be utilized for rapid
selection of cultivars to be used for phytoremediation of polluted soils. 相似文献
99.
Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase 总被引:11,自引:0,他引:11
Belimov AA Safronova VI Sergeyeva TA Egorova TN Matveyeva VA Tsyganov VE Borisov AY Tikhonovich IA Kluge C Preisfeld A Dietz KJ Stepanok VV 《Canadian journal of microbiology》2001,47(7):642-652
Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions. 相似文献
100.
Safronova V Chizhevskaya E Bullitta S Andronov E Belimov A Charles TC Lindström K 《FEMS microbiology letters》2007,269(2):207-212
Seven slow-growing bacterial strains isolated from root nodules of yellow serradella (Ornithopus compressus) that originated from Asinara Island on North Western Sardinia in Italy were characterized by partial 16S rRNA gene and intergenic spacer (ITS) sequencing as well as amplified fragment length polymorphism (AFLP) genomic fingerprinting. The results indicated that the O. compressus isolates belong to the Bradyrhizobium canariense species. The analysis of ITS sequences divided the branch of B. canariense strains into two statistically separated groups (ITS clusters I and II). All the strains in ITS cluster I showed the presence of unique oligonucleotide insert TTAGAGACTTAGGTTTCTK. This insert was neither found in other described species of the family Rhizobiaceae nor in any other bacterial families and can be used as a natural and high selective genetic marker for ITS cluster I of B. canariense strains. ITS grouping of O. compressus isolates was supported by the unweighted pair group method with arithmetic averages cluster analysis of their AFLP patterns, suggesting that the strains of ITS cluster II were genetically closer to each other than to isolates from the ITS cluster I. A taxonomic importance is supposed of the revealed 19 bp ITS insert for an intraspecific division within high heterogeneous B. canariense species. 相似文献