首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2001年   4篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
21.
Cytogenetic prenatal diagnosis (PND) is under national health program in most developed countries, while it concerns a small part of population at risk in developing countries. Finance is common reason of absence of PND development, but socio-cultural believes play an important role in Arab Muslim countries. In this paper we report results of 3110 fetal karyotypes carried out in a Tunisian population, by cultured amniocytes analysis. It is the largest report in a Muslim Arab country in our Knowledge. Abnormal karyotypes rate was 4.18% classified in two groups: bad prognosis (3.05%) and good prognosis (1.13%). Common amniocentesis indication was maternal age. The highest predictive value was observed in balanced karyotype and fetal ultrasound findings indications. Maternal serum markers were not commonly used for trisomy 21 screening. Pregnancy termination that is permitted by legal and religious authorities was accepted by 94,74% parents. Information about PND outcomes was given by genetic counselling prior to fetal sampling, pregnancy interruption was discussed with parents at cytogenetic result announcement. The authors conclude that in order to prevent mental and physical handicap related to cytogenetic disorders we have to promote PND by education for population, genetic counselling and fetal ultrasound screening; all three methods available in Tunisia.  相似文献   
22.

An extracellular β-glucosidase from Fusaruim solani cultivated on wheat bran was purified by only two chromatographic steps. The purified enzyme exhibited optimal temperature and pH at 60 °C and pH 5, respectively. The purified β-glucosidase behaves as a very large protein due to its high degree of glycosylation. More interestingly, the endoglycosidase H (Endo H) treatment led to 97.55% loss of its initial activity after 24 h of treatment. Besides, the addition of Tunicamycin (nucleoside antibiotic blocking the N-glycosylation first step) during the culture of the fungus affected seriously the glycosylation of the enzyme. Both treatments (endo H and Tunicamycin) strengthened the idea that the hyperglycosylation is involved in the β-glucosidase activity and thermostability. This enzyme was also shown to belong to class III of β-glucosidases (multi-specific) since it was able to act on either cellobiose, gentiobiose or sophorose which are disaccharide composed of two units of d-glucose connected by β1–4, β1–6 and β1–2 linkage, respectively. The β-glucosidase activity was strongly enhanced by ferrous ion (Fe2+) and high ionic strength (1 M KCl). The purified enzyme exhibited an efficient transglycosylation capacity allowing the synthesis of cellotriose and cellotetraose using cellobiose as donor.

  相似文献   
23.
Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel and added-value compounds production. To this end, new oleaginous yeast, Candida viswanathii Y-E4 was isolated, characterized and used for single cell oil (SCO) production. Physiologic and nutritional parameters optimization was carried out for improved biomass and lipid production. Y-E4 strain was able to use a wide range of substrates, especially C5 and C6 sugars as well as glycerol and hydrophobic substrates. The fatty acid profile analysis showed that oleic acid was the main component produced using different substrates. Batch and fed-bath fermentation were conducted using glucose as carbon source. Lipid production rate is twice higher in fed-batch culture providing a lipid content of 50 % (w/w). To minimize the SCO production cost, C. viswanathii Y-E4 was evaluated for its capacity to use different agro-industrial by-products for microbial oil production and changes in the fatty acid profile were monitored.  相似文献   
24.
Seed germination recovery aptitude is an adaptive trait of overriding significance for the successful establishment and dispersal of extremophile plants in their native ecosystems. Cakile maritima is an annual halophyte frequent on Mediterranean coasts, which produces transiently dormant seeds under high salinity, that germinate fast when soil salinity is lowered by rainfall. Here, we report ecophysiological and proteomic data about (1) the effect of high salt (200 mM NaCl) on the early developmental stages (germination and seedling) and (2) the seed germination recovery capacity of this species. Upon salt exposure, seed germination was severely inhibited and delayed and seedling length was restricted. Interestingly, non‐germinated seeds remained viable, showing high germination percentage and faster germination than the control seeds after their transfer onto distilled water. The plant phenotypic plasticity during germination was better highlighted by the proteomic data. Salt exposure triggered (1) a marked slower degradation of seed storage reserves and (2) a significant lower abundance of proteins involved in several biological processes (primary metabolism, energy, stress‐response, folding and stability). Yet, these proteins showed strong increased abundance early after stress release, thereby sustaining the faster seed storage proteins mobilization under recovery conditions compared to the control. Overall, as part of the plant survival strategy, C. maritima seems to avoid germination and establishment under high salinity. However, this harsh condition may have a priming‐like effect, boosting seed germination and vigor under post‐stress conditions, sustained by active metabolic machinery.  相似文献   
25.
Fungal β-glucosidases were extensively studied regarding their various potential biotechnology applications. Here, we report the selection of Fusarium solani strain producing high yield of β-glucosidase activity. The effect of some factors on β-glucosidase production was studied including: Initial pH, medium composition, concentration of carbon and nitrogen sources, and particle size of raw substrates. The optimal enzyme production was obtained with 4?units of pH. The highest β-glucosidase activity was produced on 4% wheat bran (WB) as raw carbon sources, reaching 5?U/mL. A positive correlation between WB particle size and the β-glucosidase production level was settled. The last one was enhanced to 13.60?U/mL in the presence of 0.5% (w/v) of ammonium sulfate. Interestingly, the activated charcoal was used as an inexpensive reagent enabling a rapid and efficient purification prior step that improved the enzyme-specific activity. Eventually, F. solani β-glucosidase acts efficiently during the bioconversion process of oleuropein. Indeed, 82.5% of oleuropein was deglycosylated after 1?hr at 40°C. Altogether, our data showed that the β-glucosidase of F. solani has a potential application to convert oleuropein to ameliorate food quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号