首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2833篇
  免费   206篇
  国内免费   9篇
  3048篇
  2022年   18篇
  2021年   62篇
  2020年   32篇
  2019年   44篇
  2018年   50篇
  2017年   41篇
  2016年   72篇
  2015年   91篇
  2014年   123篇
  2013年   171篇
  2012年   213篇
  2011年   198篇
  2010年   130篇
  2009年   110篇
  2008年   139篇
  2007年   133篇
  2006年   125篇
  2005年   106篇
  2004年   122篇
  2003年   123篇
  2002年   94篇
  2001年   30篇
  2000年   34篇
  1999年   32篇
  1998年   33篇
  1997年   31篇
  1996年   25篇
  1995年   24篇
  1994年   25篇
  1993年   32篇
  1992年   41篇
  1991年   17篇
  1990年   19篇
  1989年   23篇
  1987年   22篇
  1986年   14篇
  1985年   20篇
  1984年   12篇
  1983年   18篇
  1982年   17篇
  1981年   12篇
  1980年   15篇
  1979年   13篇
  1978年   13篇
  1977年   15篇
  1976年   14篇
  1975年   12篇
  1973年   14篇
  1972年   15篇
  1970年   21篇
排序方式: 共有3048条查询结果,搜索用时 0 毫秒
991.
992.
Phycisphaera-like WD2101 ‘soil group’ is one of the as-yet-uncultivated phylogenetic clades within the phylum Planctomycetes. Members of this clade are commonly detected in various terrestrial habitats. This study shows that WD2101 represented one of the major planctomycete groups in 10 boreal peatlands, comprising up to 76% and 36% of all Planctomycetes-affiliated 16S rRNA gene reads in raised bogs and eutrophic fens respectively. These types of peatlands displayed clearly distinct intra-group diversity of WD2101-affiliated planctomycetes. The first isolate of this enigmatic planctomycete group, strain M1803, was obtained from a humic lake surrounded by Sphagnum peat bogs. Strain M1803 displayed 89.2% 16S rRNA gene similarity to Tepidisphaera mucosa and was represented by motile cocci that divided by binary fission and grew under micro-oxic conditions. The complete 7.19 Mb genome of strain M1803 contained an array of genes encoding Planctomycetal type bacterial microcompartment organelle likely involved in l -rhamnose metabolism, suggesting participation of M1803-like planctomycetes in polysaccharide degradation in peatlands. The corresponding cellular microcompartments were revealed in ultrathin cell sections. Strain M1803 was classified as a novel genus and species, Humisphaera borealis gen. nov., sp. nov., affiliated with the formerly recognized WD2101 ‘soil group’.  相似文献   
993.
994.
Artemisinins are the most important class of antimalarial drugs. They specifically inhibit PfATP6, a SERCA-type ATPase of Plasmodium falciparum. Here we show that a single amino acid in transmembrane segment 3 of SERCAs can determine susceptibility to artemisinin. An L263E replacement of a malarial by a mammalian residue abolishes inhibition by artemisinins. Introducing residues found in other Plasmodium spp. also modulates artemisinin sensitivity, suggesting that artemisinins interact with the thapsigargin-binding cleft of susceptible SERCAs.  相似文献   
995.
The assembly of mitochondrial respiratory chain complex IV (cytochrome c oxidase) involves the coordinated action of several assembly chaperones. In Saccharomyces cerevisiae, at least 30 different assembly chaperones have been identified. To date, pathogenic mutations leading to a mitochondrial disorder have been identified in only seven of the corresponding human genes. One of the genes for which the relevance to human pathology is unknown is C2orf64, an ortholog of the S. cerevisiae gene PET191. This gene has previously been shown to be a complex IV assembly factor in yeast, although its exact role is still unknown. Previous research in a large cohort of complex IV deficient patients did not support an etiological role of C2orf64 in complex IV deficiency. In this report, a homozygous mutation in C2orf64 is described in two siblings affected by fatal neonatal cardiomyopathy. Pathogenicity of the mutation is supported by the results of a complementation experiment, showing that complex IV activity can be fully restored by retroviral transduction of wild-type C2orf64 in patient-derived fibroblasts. Detailed analysis of complex IV assembly intermediates in patient fibroblasts by 2D-BN PAGE revealed the accumulation of a small assembly intermediate containing subunit COX1 but not the COX2, COX4, or COX5b subunits, indicating that C2orf64 is involved in an early step of the complex IV assembly process. The results of this study demonstrate that C2orf64 is essential for human complex IV assembly and that C2orf64 mutational analysis should be considered for complex IV deficient patients, in particular those with hypertrophic cardiomyopathy.  相似文献   
996.
Human pathogenic Bartonella henselae cause cat scratch disease and vasculoproliferative disorders. An important pathogenicity factor of B. henselae is the trimeric autotransporter adhesin Bartonella adhesin A (BadA) which is modularly constructed and consists of a head, a long and repetitive neck‐stalk module with 22 repetitive neck/stalk repeats and a membrane anchor. The BadA head is crucial for bacterial adherence to host cells, binding to several extracellular matrix proteins and for the induction of vascular endothelial growth factor (VEGF) secretion. Here, we analysed the biological role of the BadA stalk in the infection process in greater detail. For this purpose, BadA head‐bearing and headless deletion mutants with different lengths (containing one or four neck/stalk repeats in the neck‐stalk module) were produced and functionally analysed for their ability to bind to fibronectin, collagen and endothelial cells and to induce VEGF secretion. Whereas a head‐bearing short version (one neck/stalk element) of BadA lacks exclusively fibronectin binding, a substantially truncated headless BadA mutant was deficient for all of these biological functions. The expression of a longer headless BadA mutant (four neck/stalk repeats) restored fibronectin and collagen binding, adherence to host cells and the induction of VEGF secretion. Our data suggest that (i) the stalk of BadA is exclusively responsible for fibronectin binding and that (ii) both the head and stalk of BadA mediate adherence to collagen and host cells and the induction of VEGF secretion. This indicates overlapping functions of the BadA head and stalk.  相似文献   
997.
We have previously identified exosomes as the paracrine factor secreted by mesenchymal stem cells. Recently, we found that the key features of reperfusion injury, namely loss of ATP/NADH, increased oxidative stress and cell death were underpinned by proteomic deficiencies in ischemic/reperfused myocardium, and could be ameliorated by proteins in exosomes. To test this hypothesis in vivo, mice (C57Bl6/J) underwent 30 min ischemia, followed by reperfusion (I/R injury). Purified exosomes or saline was administered 5 min before reperfusion. Exosomes reduced infarct size by 45% compared to saline treatment. Langendorff experiments revealed that intact but not lysed exosomes enhanced viability of the ischemic/reperfused myocardium. Exosome treated animals exhibited significant preservation of left ventricular geometry and contractile performance during 28 days follow-up. Within an hour after reperfusion, exosome treatment increased levels of ATP and NADH, decreased oxidative stress, increased phosphorylated-Akt and phosphorylated-GSK-3β, and reduced phosphorylated-c-JNK in ischemic/reperfused hearts. Subsequently, both local and systemic inflammation were significantly reduced 24 h after reperfusion. In conclusion, our study shows that intact exosomes restore bioenergetics, reduce oxidative stress and activate pro-survival signaling, thereby enhancing cardiac function and geometry after myocardial I/R injury. Hence, mesenchymal stem cell-derived exosomes are a potential adjuvant to reperfusion therapy for myocardial infarction.  相似文献   
998.
Previous investigations have demonstrated the existence of five Histoplasma capsulatum serotypes. Available specific fluorescent-antibody reagents stain only four of the five serotypes. Antibodies produced against the most complete H. capsulatum serotype were labeled with fluorescein isothiocyanate to develop a reagent specific for H. capsulatum that was reactive with all the known serotypes. The unadsorbed reagent not only stained all the H. capsulatum serotypes, but it also stained cultures of Blastomyces dermatitidis, H. duboisii, several Candida species, and a variety of other fungi. Adsorption of the conjugate with antigens of C. albicans produced a reagent that intensely stained only H. capsulatum, H. duboisii, and B. dermatitidis. Differentiation of B. dermatitidis from the Histoplasma species was accomplished by application of a B. dermatitidis specific fluorescent antibody to antigens positive with the H. capsulatum reagent. At present, differentiation of H. capsulatum from H. duboisii may be accomplished only by animal inoculation. Our data substantiate the antigenic relationships hypothesized earlier, and they indicate that H. capsulatum shares at least two antigens with the other fungi that were studied.  相似文献   
999.
Hamamelids have a long fossil history and an important fossil record. Their interesting biogeographic relationships indicate a great age. There exist good surveys of the pollen and floral organs of this family whereas it is so far poorly known from leaf architecture. The leaf architecture of all 29 genera with more than 60 among the total of 140 species of the family was surveyed in this work using clearified leaves. It is found that leaf architecture analysis may shed light on the relationships within the family and the conclusion of evolution based on leaf architecture basically accords with that based on others. The major categories of leaf architecture of Hamamelids observed in this work are as follows: leaf form, leaf margin, tooth type, venation, marginal ultimate venation, areolation and trichome. It must be emphasized that of all these characters the tooth type is the most stable and useful for systematics. In this work a new tooth type is recognized under the name altingioid. Teeth of this type are obviously asymmetrical, with a persistent transparent gland on the top, and with their lateral veinlets free, not reaching the medial vein. All three genera of the subfamily Liquidambaroideae have this tooth type, whereas most leaves of the rest genera of this family have fothergilloid teeth, which are basically symmetrical, without glands. The venation in the fothergilloid tooth is almost the same as that in the altingioid tooth, the only difference being that the lateral veins on the abaxial side of the altingioid teeth are usually absent or very weak and short if present. The present authors consider that the subfamily Liquidambaroideae has to be separated from the family Hamamelidaceae sensu lato and treated as an independent family, Altingiaceae, on the basis of the special tooth type. different pollen morphology and flower structure. The stability of tooth type may serve classification not only of order and family level, but also of tribe, genus and species level with the help of characters of teeth, such as shape, size, density, distribution, single or double, with or without glands. By comparison of Hamamelidaceae and Altingiaceae with some primitive families of subclass Hamamelidae, namely, Trochodendraceae, Tetracentraceae, Cercidiphyllaceae, Eupteleaceae and Platanaceae, the putative evolutionary trend of tooth types is outlined as follows: ↑ altingioid Chloranthoid → Cercidiphylloid →platanoid → fothergilloid In general evolutionarytrend of teeth within these families is reduction and simplification in structure.  相似文献   
1000.
Amphioxus (Branchiostoma floridae) cholinesterase 2 (ChE2) hydrolyzes acetylthiocholine (AsCh) almost exclusively. We constructed a homology model of ChE2 on the basis of Torpedo californica acetylcholinesterase (AChE) and found that the acyl pocket of the enzyme resembles that of Drosophila melanogaster AChE, which is proposed to be comprised of Phe330 (Phe290 in T. californica AChE) and Phe440 (Val400), rather than Leu328 (Phe288) and Phe330 (Phe290), as in vertebrate AChE. In ChE2, the homologous amino acids are Phe312 (Phe290) and Phe422 (Val400). To determine if these amino acids define the acyl pocket of ChE2 and its substrate specificity, and to obtain information about the hydrophobic subsite, partially comprised of Tyr352 (Phe330) and Phe353 (Phe331), we performed site-directed mutagenesis and in vitro expression. The aliphatic substitution mutant F312I ChE2 hydrolyzes AsCh preferentially but also butyrylthiocholine (BsCh), and the change in substrate specificity is due primarily to an increase in kcat for BsCh; Km and Kss are also altered. F422L and F422V produce enzymes that hydrolyze BsCh and AsCh equally due to an increase in kcat for BsCh and a decrease in kcat for AsCh. Our data suggest that Phe312 and Phe422 define the acyl pocket. We also screened mutants for changes in sensitivity to various inhibitors. Y352A increases the sensitivity of ChE2 to the bulky inhibitor ethopropazine. Y352A decreases inhibition by BW284c51, consistent with its role as part of the choline-binding site. Aliphatic replacement mutations produce enzymes that are more sensitive to inhibition by iso-OMPA, presumably by increasing access to the active site serine. Y352A, F353A and F353V make ChE2 considerably more resistant to inhibition by eserine and neostigmine, suggesting that binding of these aromatic inhibitors is mediated by π–π or cation–π interactions at the hydrophobic site. Our results also provide information about the aromatic trapping of the active site histidine and the inactivation of ChE2 by sulfhydryl reagents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号