首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   8篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   14篇
  2013年   16篇
  2012年   14篇
  2011年   18篇
  2010年   21篇
  2009年   12篇
  2008年   13篇
  2007年   28篇
  2006年   20篇
  2005年   18篇
  2004年   20篇
  2003年   11篇
  2002年   11篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   7篇
  1997年   7篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1972年   3篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1963年   1篇
  1961年   4篇
  1939年   1篇
  1924年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
81.
Enzyme activity plays an essential role in many physiological processes and diseases such as pulmonary emphysema. While the lung is constantly exposed to cyclic stretching, the effects of stretch on the mechanical properties of the extracellular matrix (ECM) during digestion have not been determined. We measured the mechanical and failure properties of elastin-rich ECM sheets loaded with static or cyclic uniaxial stretch (40% peak strain) during elastase digestion. Quasistatic stress-strain measurements were taken during 30 min of digestion. The incremental stiffness of the sheets decreased exponentially with time during digestion. However, digestion in the presence of static stretch resulted in an accelerated stiffness decrease, with a time constant that was nearly 3 x smaller (7.1 min) than during digestion alone (18.4 min). These results were supported by simulations that used a nonlinear spring network model. The reduction in stiffness was larger during static than cyclic stretch, and the latter also depended on the frequency. Stretching at 20 cycles/min decreased stiffness less than stretching at 5 cycles/min, suggesting a rate-dependent coupling between mechanical forces and enzyme activity. Furthermore, pure digestion reduced the failure stress of the sheets from 88 +/- 21 kPa in control to 29 +/- 15 kPa (P < 0.05), while static and cyclic stretch resulted in a failure stress of 7 +/- 5 kPa (P < 0.05). We conclude that not only the presence but the dynamic nature of mechanical forces have a significant impact on enzyme activity, hence the deterioration of the functional properties of the ECM during exposure to enzymes.  相似文献   
82.
For EPR measurements of RNA, DNA, or proteins, the occurrence of the paramagnetic species is necessary. The aim of this work is to improve the synthesis of two different EPR spinlabels 2,2,6,6-tetra methyl-3,4-dehydro-piperidin-N-oxyl-4-acetylene (TEMPA) 6 and 15N-labeled TEMPA 6* and their coupling to uridine. The yield of the synthesis of TEMPA could be increased to 40% and the second nitroxide 2,2,6,6-tetramethyl-3,4-dehydro-piperidin-15N-oxyl-4-acetylene 6* could be synthesized with a yield of 11%.  相似文献   
83.
The recent visualization of the motion of fluorescently labeled cellulose synthase complexes by Alexander Paredez and colleagues heralds the start of a new era in the science of the plant cell wall. Upon drug-induced complete depolymerization, the movement of the complexes does not become disordered but instead establishes an apparently self-organized novel pattern. The ability to label complexes in vivo has provided us with the ideal tool for tackling the intriguing question of the underlying default mechanisms at play.  相似文献   
84.
Irreversible cell-cycle transitions are due to systems-level feedback   总被引:2,自引:0,他引:2  
The irreversibility of cell-cycle transitions is commonly thought to derive from the irreversible degradation of certain regulatory proteins. We argue that irreversible transitions in the cell cycle (or in any other molecular control system) cannot be attributed to a single molecule or reaction, but that they derive from feedback signals in reaction networks. This systems-level view of irreversibility is supported by many experimental observations.  相似文献   
85.
86.
Bacterial protein glycosylation systems from varying species have been functionally reconstituted in Escherichia coli. Both N- and O-linked glycosylation pathways, in which the glycans are first assembled onto lipid carriers and subsequently transferred to acceptor proteins by an oligosaccharyltransferase (OTase), have been documented in bacteria. The identification and characterization of novel OTases with different properties may provide new tools for engineering glycoproteins of biotechnological interest. In the case of OTases involved in O-glycosylation (O-OTases), there is very low sequence homology between those from different bacterial species. The Wzy_C signature domain common to these enzymes is also present in WaaL ligases; enzymes involved in lipopolysaccharide biosynthesis. Therefore, the identification of O-OTases using solely bioinformatic methods is problematic. The hypothetical proteins BTH_I0650 from Burkholderia thailandensis E264 and VC0393 from Vibrio cholerae N16961 contain the Wzy_C domain. In this work, we demonstrate that both proteins have O-OTase activity and renamed them PglL(Bt) and PglL(Vc), respectively, similar to the Neisseria meningitidis counterpart (PglL(Nm)). In E. coli, PglL(Bt) and PglL(Vc) display relaxed glycan and protein specificity. However, effective glycosylation depends upon a specific combination of the protein acceptor, glycan and O-OTase analyzed. This knowledge has important implications in the design of glycoconjugates and provides novel tools for use in glycoengineering applications. The codification of enzymatically active O-OTase in the genomes of members of the Vibrio and Burkholderia genera suggests the presence of still unknown O-glycoproteins in these organisms, which might have a role in bacterial physiology or pathogenesis.  相似文献   
87.
We examined the role of the cysteine string protein (Csp) in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis in relation to another J-domain protein, Hdj-2, a recognized CFTR cochaperone. Increased expression of Csp produced a dose-dependent reduction in mature (band C) CFTR and an increase in immature (band B) CFTR. Exogenous expression of Hdj-2 also increased CFTR band B, but unlike Csp, Hdj-2 increased band C as well. The Csp-induced block of CFTR maturation required Hsp70, because a J-domain mutant (H43Q) that interferes with the ability of Csp to stimulate Hsp70 ATPase activity relieved the Csp-induced block of CFTR maturation. Nevertheless, Csp H43Q still increased immature CFTR. Csp-induced band B CFTR was found adjacent to the nucleus, co-localizing with calnexin, and it remained detergent-soluble. These data indicate that Csp did not block CFTR maturation by promoting the aggregation or degradation of immature CFTR. Csp knockdown by RNA interference produced a 5-fold increase in mature CFTR and augmented cAMP-stimulated CFTR currents. Thus, the production of mature CFTR is inversely related to the expression level of Csp. Both Csp and Hdj-2 associated with the CFTR R-domain in vitro, and Hdj-2 binding was displaced by Csp, suggesting common interaction sites. Combined expression of Csp and Hdj-2 mimicked the effect of Csp alone, a block of CFTR maturation. But together, Csp and Hdj-2 produced additive increases in CFTR band B, and this did not depend on their interactions with Hsp70, consistent with direct chaperone actions of these proteins. Like Hdj-2, Csp reduced the aggregation of NBD1 in vitro in the absence of Hsp70. Our data suggest that both Csp and Hdj-2 facilitate the biosynthesis of immature CFTR, acting as direct CFTR chaperones, but in addition, Csp is positioned later in the CFTR biogenesis cascade where it regulates the production of mature CFTR by limiting its exit from the endoplasmic reticulum.  相似文献   
88.
Toll receptors in Drosophila melanogaster function in morphogenesis and host defense. Mammalian orthologues of Toll, the Toll-like receptors (TLRs), have been studied extensively for their essential functions in controlling innate and adaptive immune responses. We report that TLR8 is dynamically expressed during mouse brain development and localizes to neurons and axons. Agonist stimulation of TLR8 in cultured cortical neurons causes inhibition of neurite outgrowth and induces apoptosis in a dissociable manner. Our evidence indicates that such TLR8-mediated neuronal responses do not involve the canonical TLR-NF-kappaB signaling pathway. These findings reveal novel functions for TLR8 in the mammalian nervous system that are distinct from the classical role of TLRs in immunity.  相似文献   
89.
A novel niacin-bound, chromium-based energy formula (EF; InterHealth Nutraceuticals, Benicia, CA) has been developed in conjunction with D-ribose, caffeine, ashwagandha extract (containing 5% withanolides), and selected amino acids. We have assessed the efficacy of oral administration of EF (40 mg x kg body wt(-1) x day(-1)) in male and female rats over a period of 90 consecutive days on the cardiovascular and pathophysiological functions in an isolated rat heart model. After 30, 60, and 90 days of treatment with EF, the hearts of male and female rats were subjected to 30 min of global ischemia followed by 2 h of reperfusion and were measured for myocardial ATP, creatine phosphate (CP), phosphorylated AMP kinase (p-AMPK), and heat shock proteins. Myocardial ATP and CP levels were increased in both male and female rats after EF treatment compared with the controls. Western blot analyses were performed to quantify the expression of stress-related proteins such as heat shock proteins (HSP-70, -32, and -25) and are found to be increased in both male and female rats after EF treatment. The p-AMPK level, which is a sensor for the energy state in various cell types, was also found to be increased after treatment with EF in both male and female rats. Aortic flow, maximum first derivative of developed pressure, left ventricular developed pressure, and infarct size were observed after ischemia-reperfusion and found to be significantly improved in EF-treated rats compared with control animals. Thus EF demonstrated long-term safety as well as exhibiting significant cardioprotective ability during ischemia and reperfusion injury by increased energy production, improved cardiac function, and reduced infarct size.  相似文献   
90.
Polarization is a hallmark of migrating cells, and an asymmetric distribution of proteins is essential to the migration process. Caveolin-1 is highly polarized in migrating endothelial cells (EC). Several studies have shown caveolin-1 accumulation in the front of migrating EC while others report its accumulation in the EC rear. In this paper we address these conflicting results on polarized localization of caveolin-1. We find evidence for the hypothesis that different modes of locomotion lead to differences in protein polarization. In particular, we show that caveolin-1 is primarily localized in the rear of cells migrating on a planar substrate, but in the front of cells traversing a three-dimensional pore. We also show that a chemoattractant, present either as a gradient or ubiquitously in the medium, does not alter caveolin-1 localization in cells in either mode of locomotion. Thus we conclude that substrate topology, and not the presence of a chemoattractant, directs the polarization of caveolin-1 in motile ECs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号