首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   29篇
  402篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2019年   8篇
  2018年   13篇
  2017年   7篇
  2016年   14篇
  2015年   15篇
  2014年   14篇
  2013年   24篇
  2012年   32篇
  2011年   33篇
  2010年   15篇
  2009年   12篇
  2008年   21篇
  2007年   25篇
  2006年   17篇
  2005年   21篇
  2004年   15篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有402条查询结果,搜索用时 0 毫秒
361.
The diagnosis of human hydatidosis is primarily made using radiological and serological methods. Radiological methods are generally of low specificity and serological methods lack sensitivity, especially for pulmonary disease. In this study the capabilities of a new rapid test, the hydatid antigen dot immunobinding assay (HADIA), which was developed for the diagnosis of pulmonary hydatidosis, were studied and compared with another immunodiagnostic method, indirect hemagglutination (IHA). The study subjects included 18 patients, 9 women, 9 men; range 7 to 63 years; mean 30 years, with surgically proven pulmonary hydatidosis, a control group comprised of 14 patients; viral respiratory infections (1), cirrhosis (2), connective tissue disease (2), taeniasis (3), and 6 healthy donors. We found that the HA-DIA test had a sensitivity of 67% and specificity of 100%, and that the IHA test had a sensitivity of 50% and specificity of 100%. We conclude that HA-DIA is a simple, rapid, low cost assay that does not require instrumentation and has a higher sensitivity than IHA for the diagnosis of pulmonary hydatidosis.  相似文献   
362.
Bone sialoprotein (BSP) is a multifunctional, highly phosphorylated, and glycosylated protein with key roles in biomineralization and tissue remodeling. This work identifies the complete topographical distribution and precise location of both the in vitro and in vivo phosphorylation sites of bovine BSP by a combination of state-of-the-art techniques and approaches. In vitro phosphorylation of native and deglycosylated BSPs by casein kinase II identified seven phosphorylation sites by solid-phase N-terminal peptide sequencing that were within peptides 12-22 (LEDS(P)EENGVFK), 42-62 (FAVQSSSDSS(P)EENGNGDS(P)S(P)EE), 80-91 (EDS(P)DENEDEES(P)E), and 135-145 (EDES(P)DEEEEEE). The in vivo phosphorylation regions and sites were identified by use of a novel thiol reagent, 1-S-mono[(14)C]carboxymethyldithiothreitol. This approach identified all of the phosphopeptides defined by in vitro phosphorylation, but two additional phosphopeptides were defined at residues, 250-264 (DNGYEIYES(P)ENGDPR), and 282-289 (GYDS(P)YDGQ). Furthermore, use of native BSP and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified several of the above peptides, including an additional phosphopeptide at residues 125-130 (AGAT(P)GK) that was not defined in either of the in vitro and in vivo studies described above. Overall, 7 in vitro and 11 in vivo phosphorylation sites were identified unequivocally, with natural variation in the quantitative extent of phosphorylation at each in vivo phosphorylation site.  相似文献   
363.
Abstract

The aim of this study is to develop a methodology in which Surface Plasmon Resonance (SPR), Ellipsometer (EM) and Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS) will be used together for detection of single-strand oligodeoxynucleotides (ssODNs) targets. A selected target-ssODNs, and its complementary, the probe-ssODNs carrying a -SH end group, a spacer arm (HS-(CH2)6–(T)15, and a non-complementary ssODNs were used. Silicone based stamps with 16 regions were prepared and used for micro-contact printing (µCP) of the probe-ssODNs on the gold coated surfaces homogeneously. A modulator-spacer molecule (6-mercapto-1-hexanol) was co-immobilized to control surface probe density, to orientate the probe-ssODNs, and to eliminate the nonspecific interactions. SPR was used successfully to follow the hybridization of the target-ssODNs with the immobilized probe-ssODNs on the platform surfaces. Complete hybridizations were achieved in 100?min. It was obtained that there was a linear relationship between relative change in delta and target concentration below 1?µm. Using imaging version of ellipsometer (IEM) allowed imaging of the surfaces and supported extra datum for the SPR results. After a very simple dehybridization protocol, MALDI-MS analysis allowed detection of the target-ssODNs hybridized on the sensor/array platforms.  相似文献   
364.
Single point mutations in the genes coding for hemostatic factors were shown to be major inherited predisposing factors for venous thromboembolism. However, their contribution in the development of non-diabetic coronary artery disease [nDCAD] remains controversial. Angiographically demonstrated nDCAD patients (n = 86) and healthy controls (n = 90) were included in the study. Genotype analysis of hemostatic gene polymorphisms were assessed by using CVD strip assay, based on allele specific oligonucleotide probes. The carrier frequency of factor V (FV) H1299R, prothrombin G20210A, glycoprotein (Gp) IIIa L33P, plasminogen activator inhibitor-I (PAI-1) 4G/5G, 4G/4G, 5G/5G, methylenetetrahydrofolate reductase (MTHFR) A1298C and β-fibrinogen −455 G > A were similar between patients and controls. In contrast, frequency of FV Leiden was significantly higher among patients (12.5%) than controls (5%, OR: 7.94; 95%CI: 1.9–49.6) and FXIII V34L was significantly lower among patients (23.7%) than controls (40%, OR: 0.24; 95%CI: 0.1–0.89). In addition, the frequency of the MTHFR C677T polymorphism was 32.5% among patients compared with 42.5% in controls, of which the T/T genotype was significantly lower among patients (5%) than controls (17.5%, OR: 0.06; 95%CI: 0.01–0.58). No difference was observed in prevalence of prothrombin G20210A, FV H1299R, Gp IIIa L33P, PAI-1 4G5G, MTHFR A1298C, β fibrinogen 455 G > A mutations between patients and controls. However, lower frequency of FXIII Val34Leu and MTHFR C677T polymorphisms may decrease, while FV Leiden polymorphism may increase development of nDCAD.  相似文献   
365.
Doxorubicin (DXR) is a frontline chemotherapy agent implicated in unintended ovarian failure in female cancer survivors. The fertility preservation techniques currently available for cancer patients are often time and cost prohibitive and do not necessarily preserve endocrine function. There are no drug-based ovary protection therapies clinically available. This study provides the first investigation using dexrazoxane (Dexra) to limit DXR insult in ovarian tissue. In KK-15 granulosa cells, a 3-h DXR treatment increased double-strand (ds) DNA breaks 40%-50%, as quantified by the neutral comet assay, and dose-dependent cytotoxicity. Dexra exhibited low toxicity in KK-15 cells, inducing no DNA damage and less than 20% cell loss. Cotreating KK-15 cells with Dexra prevented acute DXR-induced dsDNA damage. Similarly, Dexra attenuated the DXR-induced 40%-65% increase in dsDNA breaks in primary murine granulosa cells and cells from in vitro cultured murine ovaries. DXR can cause DNA damage either through a topoisomerase II-mediated pathway, based on DXR intercalation into DNA, or through oxidative stress. Cotreating KK-15 cells with 2 μM Dexra was sufficient to prevent DXR-induced, but not H(2)O(2)-induced, DNA damage. These data indicated the protective effects are likely due to Dexra's inhibition of topoisomerase II catalytic activity. This putative protective agent attenuated downstream cellular responses to DXR, preventing H2AFX activation in KK-15 cells and increasing viability as demonstrated by increasing the DXR lethal dose in KK-15 cells 5- to 8-fold (LD(20)) and primary murine granulosa cells 1.5- to 2-fold (LD(50)). These data demonstrate Dexra protects ovarian cells from DXR insult and suggest that it is a promising tool to limit DXR ovarian toxicity in vivo.  相似文献   
366.
Whole-exome sequencing (WES), which analyzes the coding sequence of most annotated genes in the human genome, is an ideal approach to studying fully penetrant autosomal-recessive diseases, and it has been very powerful in identifying disease-causing mutations even when enrollment of affected individuals is limited by reduced survival. In this study, we combined WES with homozygosity analysis of consanguineous pedigrees, which are informative even when a single affected individual is available, to identify genetic mutations responsible for Walker-Warburg syndrome (WWS), a genetically heterogeneous autosomal-recessive disorder that severely affects the development of the brain, eyes, and muscle. Mutations in seven genes are known to cause WWS and explain 50%-60% of cases, but multiple additional genes are expected to be mutated because unexplained cases show suggestive linkage to diverse loci. Using WES in consanguineous WWS-affected families, we found multiple deleterious mutations in GTDC2 (also known as AGO61). GTDC2's predicted role as an uncharacterized glycosyltransferase is consistent with the function of other genes that are known to be mutated in WWS and that are involved in the glycosylation of the transmembrane receptor dystroglycan. Therefore, to explore the role of GTDC2 loss of function during development, we used morpholino-mediated knockdown of its zebrafish ortholog, gtdc2. We found that gtdc2 knockdown in zebrafish replicates all WWS features (hydrocephalus, ocular defects, and muscular dystrophy), strongly suggesting that GTDC2 mutations cause WWS.  相似文献   
367.
Sarcolemmal membrane-associated proteins (SLMAPs) are components of cardiac membranes involved in excitation-contraction (E-C) coupling. Here, we assessed the role of SLMAP in cardiac structure and function. We generated transgenic (Tg) mice with cardiac-restricted overexpression of SLMAP1 bearing the transmembrane domain 2 (TM2) to potentially interfere with endogenous SLMAP through homodimerization and subcellular targeting. Histological examination revealed vacuolated myocardium; the severity of which correlated with the expression level of SLMAP1-TM2. High resolution microscopy showed dilation of the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) and confocal imaging combined with biochemical analysis indicated targeting of SLMAP1-TM2 to the SR/ER membranes and inappropriate homodimerization. Older (28 wk of age) Tg mice exhibited reduced contractility with impaired relaxation as assessed by left ventricle pressure monitoring. The ventricular dysfunction was associated with electrophysiological abnormalities (elongated QT interval). Younger (5 wk of age) Tg mice also exhibited an elongated QT interval with minimal functional disturbances associated with the activation of the fetal gene program. They were less responsive to isoproterenol challenge (ΔdP/dt(max)) and developed electrical and left ventricular pressure alternans. The altered electrophysiological and functional disturbances in Tg mice were associated with diminished expression level of calcium cycling proteins of the sarcoplasmic reticulum such as the ryanodine receptor, Ca(2+)-ATPase, calsequestrin, and triadin (but not phospholamban), as well as significantly reduced calcium uptake in microsomal fractions. These data demonstrate that SLMAP is a regulator of E-C coupling at the level of the SR and its perturbation results in progressive deterioration of cardiac electrophysiology and function.  相似文献   
368.
A new habitat and a new chlorophyll (Chl) d‐containing cyanobacterium belonging to the genus Acaryochloris are reported in this study. Hyperspectral microscopy showed the presence of Chl d‐containing microorganisms in epiphytic biofilms on a red alga (Gelidium caulacantheum) colonizing the pneumato‐phores of a temperate mangrove (Avicennia marina). The presence of Chl d was further proven by high performance liquid chromatography (HPLC)‐based pigment analysis and by confocal imaging of cultured cells. Enrichment of mangrove biofilm samples under near‐infrared radiation (NIR) yielded the new Acaryochloris sp. MPGRS1, which was closely related in terms of 16S rRNA gene sequence to an isolate from the hypertrophic Salton Sea, USA. The new isolate used Chl d as its major photopigment; Chl d and Chl a contents were ~98% and 1%–2% of total cellular chlorophyll, respectively. These findings expand the variety of ecological niches known to harbor Chl d‐containing cyanobacteria and support our working hypothesis that such oxyphototrophs may be ubiquitous in habitats depleted of visible light, but with sufficient NIR exposure.  相似文献   
369.
Cyclophosphamide (CP) has potential urotoxicity such as hemorrhagic cystitis (HC). 2-Mercaptoethane sulfonate (mesna) has been widely used as an effective agent against CP-induced cystitis, but significant HC has still been encountered clinically. In recent studies, mesna was shown to be more effective if combined with antioxidants. The purpose of this study was to evaluate the effects of antioxidants, alpha-tocopherol, beta-carotene and melatonin on CP-induced bladder damage in rats, even if used without mesna administration. Male Sprague-Dawley rats weighing 180-210 g were divided into 5 groups. Four groups received a single dose of CP (100 mg/kg) intraperitoneally with the same time intervals. Group 2 received CP only, group 3 received beta-carotene (40 mg/kg/day), group 4 received alpha-tocopherol (40 mg/kg/day) and group 5 received melatonin (10 mg/kg/day) both before and the day after CP injection. Group 1 served as control. Bladder histopathology, as well as malondialdehyde (MDA) and iNOS levels, and excretion of nitrite-nitrates (NO(x)) in urine were evaluated. CP injection resulted in severe histological changes and macroscopic hematuria. alpha-Tocopherol and melatonin showed meaningful protection against bladder damage. Protection by beta-carotene was also significant but weaker. MDA levels increased significantly with CP injection and all antioxidants ameliorated this increase in bladder tissue. CP also elevated the NO(x) level in urine and iNOS activity in bladder. Only melatonin was able to decrease these parameters. In conclusion, there is no doubt that oxidants have a role in the pathogenesis of CP-cystitis. Antioxidants, especially melatonin and alpha-tocopherol, may help to ameliorate bladder damage induced by CP.  相似文献   
370.
Akt kinases mediate cell growth and survival. Here, we report that a pro-apoptotic kinase, Mst1/STK4, is a physiological Akt1 interaction partner. Mst1 was identified as a component of an Akt1 multiprotein complex isolated from lipid raft-enriched fractions of LNCaP human prostate cancer cells. Endogenous Mst1, along with its paralog, Mst2, acted as inhibitors of endogenous Akt1. Surprisingly, mature Mst1 as well as both of its caspase cleavage products, which localize to distinct subcellular compartments and are not structurally homologous, complexed with and inhibited Akt1. cRNAs encoding full-length Mst1, and N- and C-terminal caspase Mst1 cleavage products, reverted an early lethal phenotype in zebrafish development induced by expression of membrane-targeted Akt1. Mst1 and Akt1 localized to identical subcellular sites in human prostate tumors. Mst1 levels declined with progression from clinically localized to hormone refractory disease, coinciding with an increase in Akt activation with transition from hormone naïve to hormone-resistant metastases. These results position Mst1/2 within a novel branch of the phosphoinositide 3-kinase/Akt pathway and suggest an important role in cancer progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号