首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8309篇
  免费   661篇
  国内免费   601篇
  9571篇
  2024年   17篇
  2023年   106篇
  2022年   268篇
  2021年   439篇
  2020年   309篇
  2019年   348篇
  2018年   372篇
  2017年   251篇
  2016年   358篇
  2015年   505篇
  2014年   575篇
  2013年   606篇
  2012年   765篇
  2011年   637篇
  2010年   386篇
  2009年   371篇
  2008年   412篇
  2007年   383篇
  2006年   347篇
  2005年   278篇
  2004年   237篇
  2003年   204篇
  2002年   176篇
  2001年   143篇
  2000年   114篇
  1999年   133篇
  1998年   79篇
  1997年   89篇
  1996年   81篇
  1995年   74篇
  1994年   85篇
  1993年   60篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9571条查询结果,搜索用时 15 毫秒
61.
This paper aimed to analyze antibody responses to SARS-CoV-2 in various populations. Two hundred and six COVID-19 patients, 46 convalescent patients, and 270 healthy population were enrolled. Antibodies against nucleocapsid protein (N) and spike protein's receptor-binding domain (RBD), and neutralizing antibody were detected. The results demonstrated both anti-N and anti-RBD antibodies could be detected in about 80% of COVID-19 patients and 90% of convalescent patients, while no antibodies could be detected in some convalescents and patients even after 14 days post-onset of symptoms. The level of anti-RBD antibody strongly correlated with the neutralizing activity of sera from these two cohorts. The titer of neutralizing antibody was lower in convalescents than that in active COVID-19 patients. In addition, the titer of neutralizing antibody was less than 1:80 in none of the severe COVID-19 patients, 18.8% in non-severe COVID-19 patients, and 32.6% in convalescents. The study suggests that the level of anti-RBD antibody is closely related to neutralization activity in COVID-19 patients and convalescents. Some SARS-CoV-2-infected cases trigger a weak antiviral immune response, and the level of neutralizing antibody may have a faster decay rate.  相似文献   
62.
63.
Three processes play an important role in plant speciation: isolation, hybridization and polyploidization. Galapagos endemic Opuntia display putatively all of these processes. On this archipelago most islands are inhabited by a single Opuntia taxon. Santa Cruz, however, houses two morphologically distinct O. echios varieties (echios and gigantea). Morphological intermediates are found where these two geographically isolated varieties meet. Here we used ten microsatellite loci to reveal the population genetic structure of this system. In contrast to earlier studies, we found high genetic variability within localities. Genetic structuring was weak and no evidence for the existence of hybrids was found. The reasons for this weak genetic structure may include: the species’ hexaploid nature, high levels of gene flow, recent colonization, and the lack of geographic barriers. This first detailed genetic study on these threatened species will be important for further conservation planning.  相似文献   
64.
Gas exchange, chlorophyll (Chl) fluorescence, and contents of some metabolites in two genotypes of jasmine (Jasminum sambac), single petal (SP) and double petal (DP) one, were analyzed during dehydration and re-hydration. Water stress significantly decreased net photosynthetic rate, stomatal conductance, and maximum photochemical efficiency (Fv/Fm) in both jasmine genotypes, but increased minimum fluorescence (F0) only in DP-jasmine. Water stress also decreased starch content, while increased contents of total soluble sugars and proline in leaves of both genotypes. SP-jasmine demonstrated higher drought tolerance as evidenced by maintaining higher gas exchange and photochemical efficiency and lower alteration of metabolites than DP-jasmine. Recovery analysis revealed that drought-induced injury in photosynthetic machinery in jasmine plants was reversible. DP-jasmine exhibited a slow recovery of drought-induced impairment in photosynthetic activity and associated metabolites, suggesting that this genotype had lower capacity to adapt to water limited condition. Higher yield stability of SP-than that of DP-jasmine under rain-fed condition finally confirmed higher drought tolerance of SP-jasmine.  相似文献   
65.
66.
Acute lung injury is characterized by an increase of inflammatory reaction and severe lung edema. Even if there have been great advances in the identification of genes and signaling pathways involved in acute lung injury, the fundamental mechanisms of initiation and propagation of acute lung injury have not been understood completely. A growing amount of evidence indicates that microRNAs (miRNAs) are involved in various human diseases. However, the expression profile and function of miRNAs in acute lung injury have not been investigated. Here, using real-time polymerase chain reaction analysis, we show that a collection of miRNAs is dynamically regulated in lipopolysaccharide (LPS)-induced mouse acute lung injury. Among them, miR-199a and miR-16 are the most significantly down-regulated miRNAs. To study the role of miR-199a and miR-16 in acute lung injury, an over-expression of miR-199a or miR-16 assay was performed in LPS-treated A549 cells, and then the expression of inflammatory factors was analyzed. Over-expression of miR-199a could not alter the expression level of interleukin (IL)-6 and tumor necrosis factor-alpha (TNFα), while up-regulation of miR-16 could significantly down-regulate IL-6 and TNFα expression level. Using bioinformatic analysis, we show that a 3' untranslational region (UTR) of IL-6 and TNFα contains the binding sites of miR-16. Accordingly, over-expression of miR-16 could significantly suppress the luciferase activity of reporter fusion with the binding sites of TNFα in its 3'UTR region, suggesting that miR-16 played its role in LPS-induced lung inflammation by a direct manner. In this study, we show for the first time that miRNAs are dynamically regulated and play an important function in LPS-induced lung injury.  相似文献   
67.
Radiation‐induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) ‐induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti‐injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation‐induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation‐induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation‐induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.  相似文献   
68.
The high-density consensus map was constructed based on the GY14 × PI 183967 map from an inter-subspecific cross and the extended S94 × S06 map from an intra-subspecific cross. The consensus map was composed of 1,369 loci, including 1,152 SSR loci, 192 SRAP loci, 21 SCAR loci and one STS locus as well as three gene loci of fruit external quality traits in seven chromosomes, and spanned 700.5 cM, of which 682.7 cM (97.5%) were covered by SSR markers. The average genetic distance and physical interval between loci were 0.51 cM and ~268 kbp, respectively. Additionally, the physical position of the sequence-associated markers aligned along the assembled cucumber genome sequence established a relationship between genetic maps and cucumber genome sequence and to a great extent validated the order of markers in individual maps and consensus map. This consensus map with a high marker density and well-ordered markers is a saturated and reliable linkage map for genetic analysis of cucumber or the Cucurbitaceae family of plants.  相似文献   
69.
70.
Yin W  Zhou XM  Cai BC 《生理学报》2003,55(4):481-486
体外低钾培养肾细胞能刺激细胞膜钠-钾ATP酶。本研究利用Madin Darby狗肾细胞能在无血清培养液中健康生存48h这一特征,研究体外低钾刺激细胞膜钠-钾ATP酶所依赖的血清中的活性因子,观察了表皮生长因子(EGF)、胰岛素样生长因子(IGF1)、前列腺素1(PGE1)和转铁蛋白(tranderrin)在这一过程中的作用。结果表明,在无血清培养液中低钾并不能刺激细胞膜钠—钾ATP酶,而添加转铁蛋白可模拟血清的作用。转铁蛋白能剂量依赖性地增加ouabain结合位点,对细胞膜钠-钾ATP酶作用呈良好的时间效应关系。在低钾无血清培养液中,细胞膜钠-钾ATP酶α1亚基启动子活性增强,α1与β1亚基蛋白质表达的增加依赖于转铁蛋白的存在。进一步研究结果表明,低钾在转铁蛋白的无血清培养液环境中能增加细胞对铁的摄取(^59Fe),该作用可被铁螯合剂(deferoxamine,DFO;35 μmol/L)所阻断。DFO也可阻断转铁蛋白依赖性低钾刺激细胞膜钠-钾ATP酶数目的增多,α1亚基启动子活性增强,α1与β1亚基蛋白质表达增加。以上结果表明,低钾对细胞膜钠-钾ATP酶活性的刺激作用依赖于转铁蛋白所调节的铁的摄取。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号