首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15373篇
  免费   1154篇
  国内免费   868篇
  17395篇
  2024年   33篇
  2023年   208篇
  2022年   516篇
  2021年   802篇
  2020年   487篇
  2019年   624篇
  2018年   591篇
  2017年   424篇
  2016年   585篇
  2015年   880篇
  2014年   988篇
  2013年   1107篇
  2012年   1322篇
  2011年   1216篇
  2010年   756篇
  2009年   670篇
  2008年   752篇
  2007年   697篇
  2006年   595篇
  2005年   525篇
  2004年   461篇
  2003年   373篇
  2002年   329篇
  2001年   311篇
  2000年   255篇
  1999年   230篇
  1998年   149篇
  1997年   148篇
  1996年   150篇
  1995年   110篇
  1994年   111篇
  1993年   81篇
  1992年   134篇
  1991年   102篇
  1990年   78篇
  1989年   78篇
  1988年   63篇
  1987年   71篇
  1986年   64篇
  1985年   50篇
  1984年   48篇
  1983年   41篇
  1982年   24篇
  1981年   13篇
  1980年   16篇
  1979年   19篇
  1977年   14篇
  1976年   11篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.

Background

Insertions and deletions (indels) are the most abundant form of structural variation in all genomes. Indels have been increasingly recognized as an important source of molecular markers due to high-density occurrence, cost-effectiveness, and ease of genotyping. Coupled with developments in bioinformatics, next-generation sequencing (NGS) platforms enable the discovery of millions of indel polymorphisms by comparing the whole genome sequences of individuals within a species.

Results

A total of 1,973,746 unique indels were identified in 345 maize genomes, with an overall density of 958.79 indels/Mbp, and an average allele number of 2.76, ranging from 2 to 107. There were 264,214 indels with polymorphism information content (PIC) values greater than or equal to 0.5, accounting for 13.39 % of overall indels. Of these highly polymorphic indels, we designed primer pairs for 83,481 and 29,403 indels with major allele differences (i.e. the size difference between the most and second most frequent alleles) greater than or equal to 3 and 8 bp, respectively, based on the differing resolution capabilities of gel electrophoresis. The accuracy of our indel markers was experimentally validated, and among 100 indel markers, average accuracy was approximately 90 %. In addition, we also validated the polymorphism of the indel markers. Of 100 highly polymorphic indel markers, all had polymorphisms with average PIC values of 0.54.

Conclusions

The maize genome is rich in indel polymorphisms. Intriguingly, the level of polymorphism in genic regions of the maize genome was higher than that in intergenic regions. The polymorphic indel markers developed from this study may enhance the efficiency of genetic research and marker-assisted breeding in maize.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1797-5) contains supplementary material, which is available to authorized users.  相似文献   
142.
Enantioselective liquid–liquid extraction of homophenylalanine (Hph) enantiomers was investigated with metal-BINAP complexes as enantioselective extractants. The metal complexes were synthesized by the complexation of (s)-2,2′-Bis(diphenylphosphino)-1,1′-binaphthalene (BINAP) with different central ions, among which, copper(I) complex allowed the separation of the Hph enantiomers with the highest operational selectivity. Efficiency of the extraction depends, often strongly, on a number of process variables, including types of organic solvents, pH of the aqueous phase, concentration of host and substrate, and temperature. In order to better understand the extraction process, equilibrium of the system were modeled by a homogeneous reaction model and an interfacial reaction model, respectively. Important parameters required by the modeling, such as complexation equilibrium constant and physical distribution coefficients were determined experimentally. When coupled with the parameters, extraction performance can be predicted by the models. Comparison between the experimental values and the model predictions indicates that the homogeneous reaction model can predict more accurately. By modeling and experiment, an optimal extraction condition concerning pH of 8 and host concentration of 2 mmol/L was obtained with high enantioselective (α) of 1.837 and performance factor (pf) of 0.086.  相似文献   
143.
Oligodendrocytes myelinate axons in the vertebrate central nervous system (CNS). They develop from precursor cells (OPCs), some of which persist in the adult CNS. Adult OPCs differ in many of their properties from OPCs in the developing CNS. In this study we have purified OPCs from postnatal rat optic nerve and cultured them in serum-free medium containing platelet-derived growth factor (PDGF), the main mitogen for OPCs, but in the absence of thyroid hormone in order to inhibit their differentiation into oligodendrocytes. We find that many of the cells continue to proliferate for more than a year and progressively acquire a number of the characteristics of OPCs isolated from adult optic nerve. These findings suggest that OPCs have an intrinsic maturation program that progressively changes the cell's phenotype over many months. When we culture the postnatal OPCs in the same conditions but with the addition of basic fibroblast growth factor (bFGF), the cells acquire these mature characteristics much more slowly, suggesting that the combination of bFGF and PDGF, previously shown to inhibit OPC differentiation, also inhibits OPC maturation. The challenge now is to determine the molecular basis of such a protracted maturation program and how the program is restrained by bFGF.  相似文献   
144.
Current tools used in the reconstruction of ancestral gene orders often fall into event-based and adjacency-based methods according to the principles they follow. Event-based methods such as GRAPPA are very accurate but with extremely high complexity, while more recent methods based on gene adjacencies such as InferCARsPro is relatively faster, but often produces an excessive number of chromosomes. This issue is mitigated by newer methods such as GapAdj, however it sacrifices a considerable portion of accuracy. We recently developed an adjacency-based method in the probabilistic framework called PMAG to infer ancestral gene orders. PMAG relies on calculating the conditional probabilities of gene adjacencies that are found in the leaf genomes using the Bayes'' theorem. It uses a novel transition model which accounts for adjacency changes along the tree branches as well as a re-rooting procedure to prevent any information loss. In this paper, we improved PMAG with a new method to assemble gene adjacencies into valid gene orders, using an exact solver for traveling salesman problem (TSP) to maximize the overall conditional probabilities. We conducted a series of simulation experiments using a wide range of configurations. The first set of experiments was to verify the effectiveness of our strategy of using the better transition model and re-rooting the tree under the targeted ancestral genome. PMAG was then thoroughly compared in terms of three measurements with its four major competitors including InferCARsPro, GapAdj, GASTS and SCJ in order to assess their performances. According to the results, PMAG demonstrates superior performance in terms of adjacency, distance and assembly accuracies, and yet achieves comparable running time, even all TSP instances were solved exactly. PMAG is available for free at http://phylo.cse.sc.edu.  相似文献   
145.
146.
147.
Autumnal tints are one of the most manifest and fascinating natural phenomena, but the mechanism of chlorophyll (Chl)-breakdown in deciduous trees has not been fully elucidated. In this study, we analyzed the composition of Chl-related compounds and determined the activities of initial Chl-degrading enzymes in Ginkgo leaves at various stages in the process of autumnal coloring. Only pheophytin a (Pheo a, Mg-free Chl a) was detected in yellow leaves by HPLC analysis, and the activity of Mg-dechelatase in yellow leaves was found to be higher than in green leaves. These findings showed that the removal of magnesium from Chl a occurred in advance of dephytylation in the Ginkgo.  相似文献   
148.
Gao Z  Li Z  Zhang Y  Huang H  Li M  Zhou L  Tang Y  Yao B  Zhang W 《Biotechnology letters》2012,34(3):507-514
The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35–40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml−1 (2.5 g protein l−1) in a 3 l fermentor—410% higher than GOD-w (148 U ml−1), and thus is a low-cost alternative for the bread baking industry.  相似文献   
149.
150.
The ordering and orientation of genomic scaffolds to reconstruct chromosomes is an essential step during de novo genome assembly. Because this process utilizes various mapping techniques that each provides an independent line of evidence, a combination of multiple maps can improve the accuracy of the resulting chromosomal assemblies. We present ALLMAPS, a method capable of computing a scaffold ordering that maximizes colinearity across a collection of maps. ALLMAPS is robust against common mapping errors, and generates sequences that are maximally concordant with the input maps. ALLMAPS is a useful tool in building high-quality genome assemblies. ALLMAPS is available at: https://github.com/tanghaibao/jcvi/wiki/ALLMAPS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号