首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3344篇
  免费   227篇
  国内免费   178篇
  2024年   6篇
  2023年   70篇
  2022年   144篇
  2021年   280篇
  2020年   195篇
  2019年   246篇
  2018年   215篇
  2017年   150篇
  2016年   213篇
  2015年   281篇
  2014年   363篇
  2013年   358篇
  2012年   332篇
  2011年   299篇
  2010年   147篇
  2009年   116篇
  2008年   115篇
  2007年   82篇
  2006年   46篇
  2005年   41篇
  2004年   23篇
  2003年   12篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1959年   2篇
排序方式: 共有3749条查询结果,搜索用时 375 毫秒
21.
22.
23.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   
24.
Chrysanthemum is one of the most important ornamental flowers in the world, and temperature has a significant influence on its field production. In the present study, differentially expressed proteins were investigated in the leaves of Dendranthema grandiflorum ‘Jinba’ under high temperature stress using label-free quantitative proteomics techniques. The expressed proteins were comparatively identified and analyzed. A total of 1,463 heat-related, differentially expressed proteins were successfully identified by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS), and 1,463 heat-related, differentially expressed proteins were successfully identified by mass spectrometry after a high temperature treatment. Among these, 701 proteins were upregulated and 762 proteins were downregulated. The in-depth bioinformatics analysis of these differentially expressed proteins revealed that these were involved in energy metabolism pathways, protein metabolism, and heat shock. In the present study, the investigators determined the changes in the levels of some proteins, and their expression at the protein and molecular levels in chrysanthemum to help reveal the mechanism of heat resistance in chrysanthemum. Furthermore, the present study elucidated some of the proteins correlated to heat resistance in chrysanthemum, and their expression changes at the protein and molecular levels to help reveal the mechanism of heat resistance in this flower species. These results provide a theoretical basis for the selection of new heat resistant varieties of chrysanthemum in the field.  相似文献   
25.
26.
Zhang  Keji  Gao  Yuan  Deng  Yuxiao  Zhou  Xiao  Zhu  Changqing  He  Zhengyu  Lv  Dan 《Molecular and cellular biochemistry》2021,476(1):93-107
Molecular and Cellular Biochemistry - Mesenchymal stem cells (MSCs) can alleviate acute respiratory distress syndrome (ARDS), but the mechanisms involved are unclear, especially about their...  相似文献   
27.
Journal of Plant Growth Regulation - Powdery mildew (PM) is one of the most severe foliar diseases in cucumbers (Cucumis sativus L.), but the inheritance of PM resistance remains unclear. The...  相似文献   
28.
Ji  Ruiqin  Gao  Shiqi  Bi  Qing  Wang  Yilian  Lv  Mingcan  Ge  Wenjie  Feng  Hui 《Journal of Plant Growth Regulation》2021,40(1):405-422
Journal of Plant Growth Regulation - Clubroot disease, caused by Plasmodiophora brassicae Woronin infection, leads to significant yield and economic losses in cruciferous vegetables. However, the...  相似文献   
29.
30.
ObjectivesNLRP3 inflammasome is a critical part of the innate immune system and plays an important role in a variety of inflammatory diseases. However, the effects of NLRP3 inflammasome on periodontitis have not been fully studied.Materials and methodsWe used ligature‐induced periodontitis models of NLRP3 knockout mice (NLRP3KO) and their wildtype (WT) littermates to compare their alveolar bone phenotypes. We further used Lysm‐Cre/RosanTnG mouse to trace the changes of Lysm‐Cre+ osteoclast precursors in ligature‐induced periodontitis with or without MCC950 treatment. At last, we explored MCC950 as a potential drug for the treatment of periodontitis in vivo and in vitro.ResultsHere, we showed that the number of osteoclast precursors, osteoclast differentiation and alveolar bone loss were reduced in NLRP3KO mice compared with WT littermates, by using ligature‐induced periodontitis model. Next, MCC950, a specific inhibitor of the NLRP3 inflammasome, was used to inhibit osteoclast precursors differentiation into osteoclast. Further, we used Lysm‐Cre/RosanTnG mice to demonstrate that MCC950 decreases the number of Lysm‐Cre+ osteoclast precursors in ligature‐induced periodontitis. At last, treatment with MCC950 significantly suppressed alveolar bone loss with reduced IL‐1β activation and osteoclast differentiation in ligature‐induced periodontitis.ConclusionOur findings reveal that NLRP3 regulates alveolar bone loss in ligature‐induced periodontitis by promoting osteoclastic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号