首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   24篇
  2023年   5篇
  2022年   5篇
  2021年   14篇
  2020年   30篇
  2019年   36篇
  2018年   18篇
  2017年   10篇
  2016年   7篇
  2015年   25篇
  2014年   17篇
  2013年   17篇
  2012年   19篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   2篇
  1968年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
241.
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.  相似文献   
242.
Background

The combined restoration of tumor-suppressive microRNAs (miRs) has been identified as a promising approach for inhibiting breast cancer development. This study investigated the effect of the combined restoration of miR-424-5p and miR-142-3p on MCF-7 cells and compared the efficacy of the combined therapy with the monotherapies with miR-424-5p and miR-142-3p.

Methods

After transfection of miR-424-5p and miR-142-3p mimics into MCF-7 cells in the combined and separated manner, the proliferation of tumoral cells was assessed by the MTT assay. Also, the apoptosis, autophagy, and cell cycle of the cells were analyzed by flow cytometry. Western blot and qRT-PCR were used to study the expression levels of c-Myc, Bcl-2, Bax, STAT-3, Oct-3, and Beclin-1.

Results

Our results have demonstrated that the combined restoration of miR-424-5p and miR-142-3p is more effective in inhibiting tumor proliferation via upregulating Bax and Beclin-1 and downregulating Bcl-2 and c-Myc. Besides, the combined therapy has arrested the cell cycle in the sub-G1 and G2 phases and has suppressed the clonogenicity via downregulating STAT-3 and Oct-3, respectively.

Conclusion

The combined restoration of miR-424-5p and miR-142-3p is more effective in inhibiting MCF-7 breast cancer development than monotherapies with miR-424-5p and miR-142-3p.

  相似文献   
243.
244.
Minisatellites provide the most informative system for analyzing processes of tandem repeat turnover in humans. However, little is known about minisatellites and the mechanisms by which they mutate in other species. To this end, we have isolated and characterized 76 endogenous mouse VNTRs. Fifty-one loci have been localized on mouse chromosomes and, unlike in humans, show no clustering in proterminal regions. Sequence analysis of 25 loci revealed the majority to be authentic minisatellites with GC-rich repeat units ranging from 14 to 47 bp in length. We have further characterized 3 of the most polymorphic loci both inMus musculussubspecies and in inbred strains by using minisatellite variant repeat mapping (MVR) by PCR to gain insight into allelic diversity and turnover processes. MVR data suggest that mouse minisatellites mutate mainly by intra-allelic nonpolar events at a rate well below 10−3per gamete, in contrast to the high-frequency complex meiotic gene conversion-like events seen in humans. These results may indicate a fundamental difference in mechanisms of minisatellite mutation and genome turnover between mice and humans.  相似文献   
245.
Activating point mutations of the RAS gene act as driver mutations for a subset of precursor-B cell acute lymphoblastic leukaemias (pre-B ALL) and represent an ambitious target for therapeutic approaches. The X box-binding protein 1 (XBP1), a key regulator of the unfolded protein response (UPR), is critical for pre-B ALL cell survival, and high expression of XBP1 confers poor prognosis in ALL patients. However, the mechanism of XBP1 activation has not yet been elucidated in RAS mutated pre-B ALL. Here, we demonstrate that XBP1 acts as a downstream linchpin of the IL-7 receptor signalling pathway and that pharmacological inhibition or genetic ablation of XBP1 selectively abrogates IL-7 receptor signalling via inhibition of its downstream effectors, JAK1 and STAT5. We show that XBP1 supports malignant cell growth of pre-B NRASG12D ALL cells and that genetic loss of XBP1 consequently leads to cell cycle arrest and apoptosis. Our findings reveal that active XBP1 prevents the cytotoxic effects of a dual PI3K/mTOR pathway inhibitor (BEZ235) in pre-B NRASG12D ALL cells. This implies targeting XBP1 in combination with BEZ235 as a promising new targeted strategy against the oncogenic RAS in NRASG12D-mutated pre-B ALL.  相似文献   
246.
247.
248.
A few EST-derived STS markers localized on Qfhs.ndsu-3BS, a major QTL for resistance to Fusarium head blight (FHB) in wheat, have been previously identified in the 'Sumai 3'/'Stoa' population. In this study, we used a 'Wangshuibai' (resistant)/'Seri82' (susceptible) derived population, linkage group, QTL, and quantitative gene expression analysis to assess the genetic background dependence and stability of the EST-derived STS markers for use in marker aided selection to improve FHB resistance in wheat. Based on our results, a QTL in the map interval of Xsts3B-138_1-Xgwm493 on chromosome 3BS was detected for FHB resistance, which accounted for up to 16% of the phenotypic variation. BLASTN analysis indicated that Xsts3B-138_1 sequence had significant similarity with the resistance gene analogue. Real-time quantitative PCR showed that the relative expression of Xsts3B-1381 in 'Wangshuibai' at 96 h after inoculation was 2.6 times higher than 'Seri82'. Our results underlined that EST-derived STS3B-138 markers could be predominantly used in marker aided selection to improve FHB resistance in wheat.  相似文献   
249.
Diel variations of cellular optical properties were examined for cultures of the haptophyte Imantonia rotunda N. Reynolds and the diatom Thalassiosira pseudonana (Hust.) Hasle et Heimdal grown under a 14:10 light:dark (L:D) cycle and transferred from 100 μmol photons · m?2 · s?1 to higher irradiances of 250 and 500 μmol photons · m?2 · s?1. Cell volume and abundance, phytoplankton absorption coefficients, flow‐cytometric light scattering and chl fluorescence, and pigment composition were measured every 2 h over a 24 h period. Results showed that cell division was more synchronous for I. rotunda than for T. pseudonana. Several variables exhibited diel variability with an amplitude >100%, notably mean cell volume for the haptophyte and photoprotective carotenoids for both species, while optical properties such as flow‐cytometric scattering and chl a–specific phytoplankton absorption generally showed <50% diel variability. Increased irradiance induced changes in pigments (both species) and mean cell volume (for the diatom) and amplified diel variability for most variables. This increase in amplitude is larger for pigments (factor of 2 or more, notably for cellular photoprotective carotenoid content in I. rotunda and for photosynthetic pigments in T. pseudonana) than for optical properties (a factor of 1.5 for chl a–specific absorption, at 440 nm, in I. rotunda and a factor of 2 for the absorption cross‐section and the chl a–specific scattering in T. pseudonana). Consequently, diel changes in optical properties and pigmentation associated with the L:D cycle and amplified by concurrent changes in irradiance likely contribute significantly to the variability in optical properties observed in biooptical field studies.  相似文献   
250.
Cancer cells modulate their metabolic networks to support cell proliferation and a higher demand of building blocks. These changes may restrict the availability of certain amino acids for protein synthesis, which can be utilized for cancer therapy. However, little is known about the amino acid demand changes occurring during aggressive and invasive stages of cancer. Recently, we developed diricore, an approach based on ribosome profiling that can uncover amino acid limitations. Here, we applied diricore to a cellular model in which epithelial breast cells respond rapidly to TGFβ1, a cytokine essential for cancer progression and metastasis, and uncovered shortage of leucine. Further analyses indicated that TGFβ1 treatment of human breast epithelial cells reduces the expression of SLC3A2, a subunit of the leucine transporter, which diminishes leucine uptake and inhibits cell proliferation. Thus, we identified a specific amino acid limitation associated with the TGFβ1 response, a vulnerability that might be associated with aggressiveness in cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号