首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   24篇
  2023年   5篇
  2022年   7篇
  2021年   14篇
  2020年   30篇
  2019年   36篇
  2018年   18篇
  2017年   10篇
  2016年   7篇
  2015年   25篇
  2014年   17篇
  2013年   17篇
  2012年   19篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   2篇
  1968年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
201.

Background

Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out.

Results

We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism.

Conclusion

Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos.  相似文献   
202.
Cardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific increase in thyroid hormone signaling, including myocardial fibrosis, impaired myocardial contractility, and diastolic dysfunction. In wild-type littermates, treatment with isoproterenol-induced myocardial D3 activity and an increase in the left ventricular volumes, typical of cardiac remodeling and dilatation. Remarkably, isoproterenol-treated HtzD3KO mice experienced a further decrease in left ventricular volumes with worsening of the diastolic dysfunction and the restrictive cardiomyopathy, resulting in congestive heart failure and increased mortality. These findings reveal crucial roles for Dio3 in heart function and remodeling, which may have pathophysiologic implications for human restrictive cardiomyopathy.  相似文献   
203.
Background:Chronic lymphocytic leukemia (CLL) is one of the most prevalent forms of leukemia in adults. Inactivation of the DLEU7 gene is frequently observed in patients with CLL. Furthermore, microRNAs (miRNAs) have been observed to have a critical role in the pathogenesis of several cancers, including leukemia. Considering the tumor-suppressive role of DLEU7, as well as the tumor suppressor or oncogenic role of microRNAs (miRNAs), the aim of the present study was to evaluate the potential miRNAs targeting the DLEU7 gene in B-cells and explore expression changes these genes in the plasma of B-CLL patients. Methods:The miRNAs interacting with the DLEU7 gene were predicted and selected using bioinformatics tools. A total of 80 plasma samples were collected from 40 patients with B-cells and 40 healthy individuals, then subjected to RNA extraction and cDNA synthesis. The expression profiles of the predicted miRNAs and the DLEU7 gene in the plasma of B-CLL patients and healthy individuals were determined by RT-qPCR analysis. Results:The bioinformatics prediction indicated that miR-15b and miR-195 target the DLEU7 gene. The expression levels of miR-15b and miR-195 were significantly higher in the plasma of patients with B-CLL compared to the healthy individuals (91.6, p= 0.001) (169, p= 0.001). However, the expression level of the DLEU7 gene was found to be significantly lower in the patient group compared to healthy controls (0.304, p= 0.001).Conclusion:Both miR-15b and miR-195, have the potential to function as novel and non-invasive biomarkers in the diagnosis and prognosis of patients with B-CLL.Key Words: B-CLL, miRNA, Biomarker, DLEU7, RT-QPCR  相似文献   
204.
Human genetic background strongly influences susceptibility to malaria infection and progression to severe disease and death. Classical genetic studies identified haemoglobinopathies and erythrocyte-associated polymorphisms, as protective against severe disease. High throughput genotyping by mass spectrometry allows multiple single nucleotide polymorphisms (SNPs) to be examined simultaneously. We compared the prevalence of 65 human SNP''s, previously associated with altered risk of malaria, between Tanzanian children with and without severe malaria. Five hundred children, aged 1–10 years, with severe malaria were recruited from those admitted to hospital in Muheza, Tanzania and compared with matched controls. Genotyping was performed by Sequenom MassArray, and conventional PCR was used to detect deletions in the alpha-thalassaemia gene. SNPs in two X-linked genes were associated with altered risk of severe malaria in females but not in males: heterozygosity for one or other of two SNPs in the G6PD gene was associated with protection from all forms of severe disease whilst two SNPs in the gene encoding CD40L were associated with respiratory distress. A SNP in the adenyl cyclase 9 (ADCY9) gene was associated with protection from acidosis whilst a polymorphism in the IL-1α gene (IL1A) was associated with an increased risk of acidosis. SNPs in the genes encoding IL-13 and reticulon-3 (RTN3) were associated with increased risk of cerebral malaria. This study confirms previously known genetic associations with protection from severe malaria (HbS, G6PD). It identifies two X-linked genes associated with altered risk of severe malaria in females, identifies mutations in ADCY9, IL1A and CD40L as being associated with altered risk of severe respiratory distress and acidosis, both of which are characterised by high serum lactate levels, and also identifies novel genetic associations with severe malaria (TRIM5) and cerebral malaria(IL-13 and RTN3). Further studies are required to test the generality of these associations and to understand their functional consequences.  相似文献   
205.
Candidate gene identification is typically labour intensive, involving laboratory experiments required to corroborate or disprove any hypothesis for a nominated candidate gene being considered the causative gene. The traditional approach to reduce the number of candidate genes entails fine-mapping studies using markers and pedigrees. Gene prioritization establishes the ranking of candidate genes based on their relevance to the biological process of interest, from which the most promising genes can be selected for further analysis. To date, many computational methods have focused on the prediction of candidate genes by analysis of their inherent sequence characteristics and similarity with respect to known disease genes, as well as their functional annotation. In the last decade, several computational tools for prioritizing candidate genes have been proposed. A large number of them are web-based tools, while others are standalone applications that install and run locally. This review attempts to take a close look at gene prioritization criteria, as well as candidate gene prioritization algorithms, and thus provide a comprehensive synopsis of the subject matter.  相似文献   
206.
207.

Background

Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse.

Methods & results

In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates.

Conclusion

Our study shows a beneficial effect of homologous and heterologous oviduct cells on equine IVF rates, though the rates remain low. Furthers studies are necessary to identify the proteins involved. We showed that the surface plasmon resonance technique is efficient and powerful to analyze molecular interactions during fertilization.  相似文献   
208.

Background  

In the ewe, ovarian antral follicles emerge or grow from a pool of 2–3 mm follicles in a wave like pattern, reaching greater than or equal to 5 mm in diameter before regression or ovulation. There are 3 or 4 such follicular waves during each estrous cycle. Each wave is preceded by a peak in serum FSH concentrations. The role of pulsatile LH in ovarian antral follicular emergence and growth is unclear; therefore, the purpose of the present study was to further define this role.  相似文献   
209.

Background  

Vestibular schwannoma (acoustic neuroma) most commonly presents with ipsilateral disturbances of acoustic, vestibular, trigeminal and facial nerves. Presentation of vestibular schwannoma with contralateral facial pain is quite uncommon.  相似文献   
210.
Cotton (Gossypium hirsutum L., var. Coker 312) hypocotyl explants were transformed with three strains of Agrobacterium tumefaciens, LBA4404, EHA101 and C58, each harboring the recombinant binary vector pBI121 containing the chi gene insert and neomycin phosphotransferase (nptII) gene, as selectable marker. Inoculated tissue sections were placed onto cotton co-cultivation medium. Transformed calli were selected on MS medium containing 50 mg l−1 kanamycin and 200 mg l−1 cepotaxime. Putative calli were subsequently regenerated into cotton plantlets expressing both the kanamycin resistance gene and βglucuronidase (gus) as a reporter gene. Polymerase chain reaction was used to confirm the integration of chi and nptII transgenes in the T1 plants genome. Integration of chi gene into the genome of putative transgenic was further confirmed by Southern blot analysis. ‘Western’ immunoblot analysis of leaves isolated from T0 transformants and progeny plants (T1) revealed the presence of an immunoreactive band with MW of approximately 31 kDa in transgenic cotton lines using anti-chitinase-I polyclonal anti-serum. Untransformed control and one transgenic line did not show such an immunoreactive band. Chitinase specific activity in leaf tissues of transgenic lines was several folds greater than that of untransformed cotton. Crude leaf extracts from transgenic lines showed in vitro inhibitory activity against Verticillium dahliae.Transgenic plants currently growing in a greenhouse and will be bioassayed for improved resistance against V. dahlia the causal against of verticilliosis in cotton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号