首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   63篇
  国内免费   2篇
  2021年   10篇
  2020年   7篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   30篇
  2013年   24篇
  2012年   44篇
  2011年   36篇
  2010年   23篇
  2009年   16篇
  2008年   30篇
  2007年   22篇
  2006年   14篇
  2005年   24篇
  2004年   13篇
  2003年   22篇
  2002年   15篇
  2001年   15篇
  2000年   18篇
  1999年   12篇
  1998年   10篇
  1996年   8篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   7篇
  1984年   8篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1979年   15篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1974年   6篇
  1973年   5篇
  1972年   4篇
  1966年   3篇
  1963年   3篇
  1939年   4篇
排序方式: 共有623条查询结果,搜索用时 31 毫秒
151.
Low accessibility of the rRNA is together with cell wall impermeability and low cellular ribosome content a frequent reason for failure of whole-cell fluorescence hybridization with fluorescently labeled oligonucleotide probes. In this study we compare accessibility data for the 16S rRNA of Escherichia coli (gamma Proteobacteria, Bacteria) with the phylogenetically distantly related organisms Pirellula sp. strain 1 (Planctomycetes, Bacteria) and Metallosphaera sedula (Crenarchaeota, Archaea) and the 18S rRNA accessibility of Saccharomyces cerevisiae (Eucarya). For a total of 537 Cy3-labeled probes, the signal intensities of hybridized cells were quantified under standardized conditions by flow cytometry. The relative probe-conferred fluorescence intensities are shown on color-coded small-subunit rRNA secondary-structure models. For Pirellula sp., most of the probes belong to class II and III (72% of the whole data set), whereas most of the probes targeting sites on M. sedula were grouped into class V and VI (46% of the whole data set). For E. coli, 45% of all probes of the data set belong to class III and IV. A consensus model for the accessibility of the small-subunit rRNA to oligonucleotide probes is proposed which uses 60 homolog target sites of the three prokaryotic 16S rRNA molecules. In general, open regions were localized around helices 13 and 14 including target positions 285 to 338, whereas helix 22 (positions 585 to 656) and the 3' half of helix 47 (positions 1320 to 1345) were generally inaccessible. Finally, the 16S rRNA consensus model was compared to data on the in situ accessibility of the 18S rRNA of S. cerevisiae.  相似文献   
152.
Fluorescence in situ hybridization (FISH) has proven to be most useful for the identification of microorganisms. However, species-specific oligonucleotide probes often fail to give satisfactory results. Among the causes leading to low hybridization signals is the reduced accessibility of the targeted rRNA site to the oligonucleotide, mainly for structural reasons. In this study we used flow cytometry to determine whole-cell fluorescence intensities with a set of 32 Cy3-labeled oligonucleotide probes covering the full length of the D1 and D2 domains in the 26S rRNA of Saccharomyces cerevisiae PYCC 4455(T). The brightest signal was obtained with a probe complementary to positions 223 to 240. Almost half of the probes conferred a fluorescence intensity above 60% of the maximum, whereas only one probe could hardly detect the cells. The accessibility map based on the results obtained can be extrapolated to other yeasts, as shown experimentally with 27 additional species (14 ascomycetes and 13 basidiomycetes). This work contributes to a more rational design of species-specific probes for yeast identification and monitoring.  相似文献   
153.
Helper T cells, dendritic cells and CTL Immunity   总被引:8,自引:0,他引:8  
In this review, we examine the emerging view that all CTL responses depend on CD4 T-cell help for the generation of efficient memory. We further review the evidence that CD4 and CD8 T cells must recognize antigen on the same dendritic cell, and examine why this corecognition is required. Earlier studies have suggested that CD4 T cells must activate the dendritic cell via CD40 to license it for the capacity to prime CTL immunity. More recently, however, CD40 signalling of the CTL has been reported. Here, we argue that the main reason for corecognition of antigen on the dendritic cell may be related to the time taken to activate and release CD4 and CD8 T cells from their priming dendritic cell. CD4 T cells may only be capable of activating one dendritic cell during the period that CD8 T cells are primed. In this case, corecognition of this same dendritic cell would be essential.  相似文献   
154.
To investigate the role of HLA-DR4 in predisposition to arthritis, we generated transgenic mice carrying DRB1*0401 and DRB1*0402 genes. We have previously shown that DRB1*0401 molecule renders B10.RQB3 (H2A(q)) mice susceptible to porcine and human type II collagen-induced arthritis. We report that the introduction of DRB1*0402 transgene does not lead to development of arthritis in mice when they are immunized with porcine and human type II collagen. In addition, DRB1*0402 protects B10.RQB3 mice against developing arthritis with bovine type II collagen. These data show that DRB1 can modulate the disease mediated by A(q). In vivo depletion of DRB1*0402 did not lead to induction of collagen-induced arthritis in transgenic mice. In vitro cytokine analysis shows that mice protected from collagen-induced arthritis produce lower amounts of Th1 and higher levels of Th2 type cytokines upon immunization with type II collagen. Protection of mice was also related to higher apoptosis in DW10 mice as indicated by higher amounts of BclII in response to type II collagen. On the basis of our observations in HLA transgenic mice, we hypothesize that DRB1 polymorphism can modulate disease by shaping the T cell repertoire in thymus and select autoreactive T cells.  相似文献   
155.
To investigate the role of CD4 and CD8 T cells in arthritis, we generated transgenic mice deficient in CD4 and CD8 molecules expressing RA-susceptible gene HLA-DQ8. DQ8.CD4(-/-) mice were resistant to developing collagen-induced arthritis (CIA). However, DQ8.CD8(-/-) mice developed CIA with increased incidence and more severity than DQ8 mice. Both DQ8.CD8(-/-) and DQ8 mice produced rheumatoid factor. In addition, DQ8.CD8(-/-) mice produced antinuclear Abs. The B cell compartment and expression of DQ8 were normal in all the strains, although frequency of cells expressing DQ8 was less in CD4(-/-) mice. An increased frequency of CD3(+) double-negative (DN) T cells was found in DQ8.CD8(-/-) compared with DQ8.CD4(-/-) and DQ8 mice. These CD3(+) DN T cells produced high amounts of IL-10 in CD8-deficient mice. Analysis of cell division using a cell cycle tracking dye showed a higher rate of division of CD3(+) and CD3(+) DN T cells in DQ8.CD8(-/-) mice compared with DQ8.CD4(-/-) and DQ8 mice. Decreased apoptosis was seen in CIA-susceptible DQ8 and CD8-deficient mice, indicating a defect in activation-induced cell death. These observations suggest that CD4 cells are necessary for initiation of CIA in DQ8 mice. We hypothesize that CD8(+) T cells are not capable of initiating CIA in DQ8-transgenic mice but may have a regulatory/protective effect.  相似文献   
156.
157.
Rheumatoid arthritis (RA) is an inflammatory disease with a complex genetic component. An association between RA and the human leukocyte antigen (HLA) complex has long been observed in many different populations, and most studies have focused on a direct role for the HLA-DRB1 "shared epitope" in disease susceptibility. We have performed an extensive haplotype analysis, using 54 markers distributed across the entire HLA complex, in a set of 469 multicase families with RA. The results show that, in addition to associations with the DRB1 alleles, at least two additional genetic effects are present within the major histocompatibility complex. One of these lies within a 497-kb region in the central portion of the HLA complex, an interval that excludes DRB1. This genetic risk factor is present on a segment of a highly conserved ancestral A1-B8-DRB1*03 (8.1) haplotype. Additional risk genes may also be present in the HLA class I region in a subset of DRB1*0404 haplotypes. These data emphasize the importance of defining haplotypes when trying to understand the HLA associations with disease, and they clearly demonstrate that such associations with RA are complex and cannot be completely explained by the DRB1 locus.  相似文献   
158.
Bacteriorhodopsin contains nine sulfur atoms from the nine methionine residues. The distribution of these sulfur atoms in the projected density map was determined from x-ray diffraction experiments using multiple wavelength anomalous diffraction (MAD) at the sulfur K-edge (5.02 A) with synchrotron radiation. The experiments were performed with uniaxial samples of oriented purple membranes at room temperature and 86% relative humidity. For such samples only the real part f' (lambda) of the resonant scattering amplitude of sulfur contributes to the observed scattering intensity. The sulfur density was determined from the difference in diffraction intensities detected at two wavelengths near the sulfur K-edge that were approximately 0.004 A apart. The measured change in f' between these two wavelengths corresponds to 6 electron units. This shows that large anomalous dispersion effects occur near the sulfur K-edge. The in-plane positions of the sulfur atoms of Met32, Met56, and Met209 were determined unambiguously. The difference density from Met20, Met60, Met118, and Met145 is concentrated in the interior of the seven alpha-helical bundle, overlaps strongly in the projected density map, and cannot be resolved at the resolution of these experiments (8.2 A). This method of localizing individual sulfur atoms can be applied to other two-dimensional protein crystals and is promising in conjunction with the site-directed introduction of sulfur atoms by the use of cysteine mutants.  相似文献   
159.
Microalgae have the ability to convert inorganic compounds into organic compounds. When they are cultured in the presence of stable (non-radioactive) isotopes (i.e.13CO2,15NO 3 ,2H2O) their biomass becomes labeled with the stable isotopes, and a variety of stable isotopically-labeled compounds can be extracted and purified from that biomass.Two applications for stable isotopically-labeled compounds are as cell culture nutrients and as breath test diagnostics. Bacteria that are cultured with labeled nutrients will produce bacterial products that are labeled with stable isotopes. The presence of these isotopes in the bacterial products, along with recent developments in NMR technology, greatly reduces the time and effort required to determine the three-dimensional structure of macromolecules and the interaction of proteins with ligands. As breath test diagnostics, compounds labeled with13C are used to measure the metabolism of particular organs and thus diagnose various disease conditions. These tests are based on the principle that a particular compound is metabolized primarily by a single organ, and when that compound is labeled with13C, the appearance of13CO2 in exhaled breath provides information about the metabolic activity of the target organ. Tests of this type are simple to perform, non-invasive, and less expensive than many conventional diagnostic procedures.The commercialization of stable isotopically labeled compounds requires that these compounds be produced in a cost-effective manner. Our approach is to identify microalgal overproducers of the desired compounds, maximize the product content of those organisms, and purify the resulting products.  相似文献   
160.
DNA molecules of B. subtilis phage SPP1 exhibit terminal redundancy and are partially circularly permuted. This was established by the hybridization of selected EcoRI restriction fragments to single strands of SPP1 DNA and by an analysis of the distribution of denaturation loops in partially denatured SPP1 DNA molecules. Deletions in SSP1 DNA are not compensated by an increase in terminally repetitious DNA. This finding, which is unique to SPP1, is discussed in terms of a modification of the Streisinger/Botstein model of phage maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号