首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   12篇
  国内免费   1篇
  2022年   1篇
  2020年   2篇
  2018年   7篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   10篇
  2011年   5篇
  2010年   8篇
  2009年   9篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
71.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   
72.
Sequence variation in ZFX introns in human populations   总被引:3,自引:2,他引:1  
DNA variation in human populations was studied by examining the last intron of the ZFX gene (about 1, 151 bp) with a worldwide sample of 29 individuals. Only one polymorphic site was found, which is located in an Alu sequence. This polymorphism is present at an intermediate frequency in all populations studied, and could be a shared polymorphism or due to migration among populations in Asia, Europe, and Africa. The nucleotide diversity is 0.04%, supporting the view that the level of nucleotide variation in nuclear DNA is very low in humans. From the sequence data, the age (T) of the most recent common ancestor of the sampled sequences is estimated: the mode of T is about 306,000 years, and the 95% confidence interval of T is 162,000-952,000 years. This mode estimate is considerably older than the estimates from Y- linked sequences.   相似文献   
73.
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray‐Darling Basin (MDB), Australia, using a genome‐wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype–environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.  相似文献   
74.
Dispersal and natural selection are key evolutionary processes shaping the distribution of phenotypic and genetic diversity. For species inhabiting complex spatial environments however, it is unclear how the balance between gene flow and selection may be influenced by landscape heterogeneity and environmental variation. Here, we evaluated the effects of dendritic landscape structure and the selective forces of hydroclimatic variation on population genomic parameters for the Murray River rainbowfish, Melanotaenia fluviatilis across the Murray–Darling Basin, Australia. We genotyped 249 rainbowfish at 17,503 high‐quality SNP loci and integrated these with models of network connectivity and high‐resolution environmental data within a riverscape genomics framework. We tested competing models of gene flow before using multivariate genotype–environment association (GEA) analysis to test for signals of adaptive divergence associated with hydroclimatic variation. Patterns of neutral genetic variation were consistent with expectations based on the stream hierarchy model and M. fluviatilis’ moderate dispersal ability. Models incorporating dendritic network structure suggested that landscape heterogeneity is a more important factor determining connectivity and gene flow than waterway distance. Extending these results, we also introduce a novel approach to controlling for the unique effects of dendritic network structure in GEA analyses of populations of aquatic species. We identified 146 candidate loci potentially underlying a polygenic adaptive response to seasonal fluctuations in stream flow and variation in the relative timing of temperature and precipitation extremes. Our findings underscore an emerging predominant role for seasonal variation in hydroclimatic conditions driving local adaptation and are relevant for informing proactive conservation management.  相似文献   
75.

Background

Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations.

Results

We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data.

Conclusion

Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.  相似文献   
76.
77.
78.
We critically compared Marcusenius specimens from the mouth of the Cunene River on the Namibia/Angola border, a harsh desert environment on the Atlantic Ocean coast virtually devoid of aerial insects with aquatic larvae which are an important food item, with Marcusenius multisquamatus Kramer & Wink, 2013 from the escarpment region of that same river, in a relatively rich and productive subtropical savannah environment. River mouth specimens were differentiated in morphology and electric organ discharges, as determined by ANOVA/MANOVA comparisons, principal component and discriminant analyses on morphological and electrophysiological characters, and genetics, including sequences of the mitochondrial cytochrome b gene, indicating reproductive isolation. Specimens from the river mouth differed from M. multisquamatus, their closest relatives, by having a shorter snout, a smaller eye diameter, and smaller nares separation. River mouth specimens were also differentiated from other, increasingly less-close relatives, such as M. altisambesi Kramer et al., 2007 from the Okavango River, Botswana, and from M. krameri Maake et al., 2014 from the Limpopo System, South Africa. We therefore designate the new species Marcusenius desertus sp. nov. for the Cunene River mouth population.  相似文献   
79.
Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully assessed when planning population genetic studies of cetaceans.  相似文献   
80.
Here we report the complete sequence of mitochondrial genomes for two sister taxa of freshwater teleosts, the recently derived Yarra pigmy perch Nannoperca obscura and the southern pigmy perch Nannoperca australis. These represent the first complete mitochondrial genomes for Percichthyidae (Perciformes), a family mostly distributed in Australia. The de novo genome assembly of 316,430 pyrosequencing reads from 454 libraries has produced the entire mitochondria for N. obscura and a nearly complete version for N. australis. The mtDNA genome from the latter was completed through the design of one primer set and standard Sanger sequencing for genome finishing, followed by the hybrid assembly of reads with MIRA software using N. obscura sequence as reference genome. The complete mitogenomes of N. obscura and N. australis are 16,496 and 16,494 bp in size, respectively. Both genomes contain 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a control region. Several characteristics of mitochondria typically found in teleost fishes were detected, such as: (i) most genes found in the heavy strand, with the exception of ND6 and eight tRNA genes; (ii) avoidance of G as the third base of codons; (iii) presence of gene overlapping; (iv) percentage of bases usage. We found only eight indels and 197 nucleotide substitutions between these Nannoperca mitogenomes, consistent with a previous hypothesis of recent speciation. The data reported here provide a resource for comparative analysis of recent evolution of mitochondrial genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号