首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   13篇
  212篇
  2021年   4篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   11篇
  2013年   13篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   5篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1961年   1篇
  1960年   1篇
  1934年   1篇
  1933年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
111.
The modulation of Ca2+ release by synthetic bee venom melittin was examined in equine and human terminal cisternae-containing fractions. Melittin (0.1 microM) decreased the threshold of Ca(2+)-induced Ca2+ release by 20% in equine muscle and by 36% in human muscle. If terminal cisternae fractions were first preloaded with Ca2+ to greater than about 75% of the threshold of Ca(2+)-induced Ca2+ release and then melittin added, an immediate and sustained release of Ca2+ occurred in preparations from both species. Addition of melittin after a Ca2+ preload of < 50% of the threshold of Ca(2+)-induced Ca2+ release did not elicit sustained Ca2+ release. Ruthenium red (10 microM) antagonized all effects of melittin on Ca2+ release. Melittin (0.1-10 microM) did not affect [3H]ryanodine binding. Melittin (0.1 microM) slightly (10%) inhibited the Ca2+ pump and this action was not antagonized by ruthenium red. These findings suggest that melittin may be an important new probe of the Ca(2+)-modulated Ca2+ release process that does not act at the ryanodine binding site.  相似文献   
112.
TRPC calcium channels are emerging as a ubiquitous feature of vertebrate cells, but understanding of them is hampered by limited knowledge of the mechanisms of activation and identity of endogenous regulators. We have revealed that one of the TRPC channels, TRPC5, is strongly activated by common endogenous lysophospholipids including lysophosphatidylcholine (LPC) but, by contrast, not arachidonic acid. Although TRPC5 was stimulated by agonists at G-protein-coupled receptors, TRPC5 activation by LPC occurred downstream and independently of G-protein signaling. The effect was not due to the generation of reactive oxygen species or because of a detergent effect of LPC. LPC activated TRPC5 when applied to excised membrane patches and thus has a relatively direct action on the channel structure, either because of a phospholipid binding site on the channel or because of sensitivity of the channel to perturbation of the bilayer by certain lipids. Activation showed dependence on side-chain length and the chemical head-group. The data revealed a previously unrecognized lysophospholipid-sensing capability of TRPC5 that confers the property of a lipid ionotropic receptor.  相似文献   
113.
114.
Gubner R  Beech IB 《Biofouling》2000,15(1-3):25-36
Surfaces of AISI 304 and 316 stainless steels were pre-treated with three different types of extracellular polymeric substances, viz. (i) exopolymers released into the culture medium ("free"; or planktonic exopolymers), (ii) capsular exopolymers, and (iii) biofilm exopolymers, produced by continuous cultures of marine Pseudomonas NCIMB 2021. The initial attachment of Pseudomonas cells to exopolymer-conditioned steel surfaces varied with the exopolymer type and concentration. Results gained from wettability studies of exopolymer-treated steel using contact angle measurements, as well as from the surface roughness measurements conducted employing atomic force microscopy analysis, could not account for the observed, statistically significant differences (p < 0.1) in the level of bacterial surface colonisation. It is therefore proposed that neither surface hydrophobicity nor roughness play an important part in the early attachment of Pseudomonas NCIMB 2021 to the conditioned steel surfaces and that a difference in the chemistry of the exopolymers is most likely a key parameter influencing initial cell adhesion to pre-treated steel.  相似文献   
115.

Background

With the advent of high throughput DNA typing, dense marker maps have become available to investigate genetic diversity on specific regions of the genome. The aim of this paper was to compare two marker based estimates of the genetic diversity in specific genomic regions lying in between markers: IBD-based genetic diversity and heterozygosity.

Methods

A computer simulated population was set up with individuals containing a single 1-Morgan chromosome and 1665 SNP markers and from this one, an additional population was produced with a lower marker density i.e. 166 SNP markers. For each marker interval based on adjacent markers, the genetic diversity was estimated either by IBD probabilities or heterozygosity. Estimates were compared to each other and to the true genetic diversity. The latter was calculated for a marker in the middle of each marker interval that was not used to estimate genetic diversity.

Results

The simulated population had an average minor allele frequency of 0.28 and an LD (r2) of 0.26, comparable to those of real livestock populations. Genetic diversities estimated by IBD probabilities and by heterozygosity were positively correlated, and correlations with the true genetic diversity were quite similar for the simulated population with a high marker density, both for specific regions (r = 0.19-0.20) and large regions (r = 0.61-0.64) over the genome. For the population with a lower marker density, the correlation with the true genetic diversity turned out to be higher for the IBD-based genetic diversity.

Conclusions

Genetic diversities of ungenotyped regions of the genome (i.e. between markers) estimated by IBD-based methods and heterozygosity give similar results for the simulated population with a high marker density. However, for a population with a lower marker density, the IBD-based method gives a better prediction, since variation and recombination between markers are missed with heterozygosity.  相似文献   
116.
Azotobacter beijerinckii was grown in ammonia-free glucose-mineral salts media in batch culture and in chemostat cultures limited by the supply of glucose, oxygen or molecular nitrogen. In batch culture poly-beta-hydroxybutyrate was formed towards the end of exponential growth and accumulated to about 74% of the cell dry weight. In chemostat cultures little poly-beta-hydroxybutyrate accumulated in organisms that were nitrogen-limited, but when oxygen limited a much increased yield of cells per mol of glucose was observed, and the organisms contained up to 50% of their dry weight of poly-beta-hydroxybutyrate. In carbon-limited cultures (D, the dilution rate,=0.035-0.240h(-1)), the growth yield ranged from 13.1 to 19.8g/mol of glucose and the poly-beta-hydroxybutyrate content did not exceed 3.0% of the dry weight. In oxygen-limited cultures (D=0.049-0.252h(-1)) the growth yield ranged from 48.4 to 70.1g/mol of glucose and the poly-beta-hydroxybutyrate content was between 19.6 and 44.6% of dry weight. In nitrogen-limited cultures (D=0.053-0.255h(-1)) the growth yield ranged from 7.45 to 19.9g/mol of glucose and the poly-beta-hydroxybutyrate content was less than 1.5% of dry weight. The sudden imposition of oxygen limitation on a nitrogen-limited chemostat culture produced a rapid increase in poly-beta-hydroxybutyrate content and cell yield. Determinations on chemostat cultures revealed that during oxygen-limited steady states (D=0.1h(-1)) the oxygen uptake decreased to 100mul h(-1) per mg dry wt. compared with 675 for a glucose-limited culture (D=0.1h(-1)). Nitrogen-limited cultures had CO(2) production values in situ ranging from 660 to 1055mul h(-1) per mg dry wt. at growth rates of 0.053-0.234h(-1) and carbon-limited cultures exhibited a variation of CO(2) production between 185 and 1328mul h(-1) per mg dry wt. at growth rates between 0.035 and 0.240h(-1). These findings are discussed in relation to poly-beta-hydroxybutyrate formation, growth efficiency and growth yield during growth on glucose. We suggest that poly-beta-hydroxybutyrate is produced in response to oxygen limitation and represents not only a store of carbon and energy but also an electron sink into which excess of reducing power can be channelled.  相似文献   
117.
Transient Receptor Potential Melastatin 3 (TRPM3) is a widely expressed calcium-permeable non-selective cation channel that is stimulated by high concentrations of nifedipine or by physiological steroids that include pregnenolone sulphate. Here we sought to identify steroids that inhibit TRPM3. Channel activity was studied using calcium-measurement and patch-clamp techniques. Progesterone (0.01-10μM) suppressed TRPM3 activity evoked by pregnenolone sulphate. Progesterone metabolites and 17β-oestradiol were also inhibitory but the effects were relatively small. Dihydrotestosterone was an inhibitor at concentrations higher than 1μM. Corticosteroids lacked effect. Overlay assays indicated that pregnenolone sulphate, progesterone and dihydrotestosterone bound to TRPM3. In contrast to dihydrotestosterone, progesterone inhibited nifedipine-evoked TRPM3 activity or activity in the absence of an exogenous activator, suggesting a pregnenolone sulphate-independent mechanism of action. Dihydrotestosterone, like a non-steroid look-alike compound, acted as a competitive antagonist at the pregnenolone sulphate binding site. Progesterone inhibited endogenous TRPM3 in vascular smooth muscle cells. Relevance of TRPM3 or the progesterone effect to ovarian cells, which have been suggested to express TRPM3, was not identified. The data further define a chemical framework for competition with pregnenolone sulphate at TRPM3 and expand knowledge of steroid interactions with TRPM3, suggesting direct steroid binding and pregnenolone sulphate-independent inhibition by progesterone.  相似文献   
118.

Background

The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction.

Methods

Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we evaluated the following genomic prediction models: genome-enabled BLUP (GBLUP), ridge regression BLUP (RRBLUP), principal component analysis followed by ridge regression (RRPCA), BayesC and Bayesian stochastic search variable selection. Prediction accuracy was measured as the correlation between predicted breeding values and observed phenotypes divided by the square root of the heritability. The data used concerned laying hens with phenotypes for number of eggs in the first production period and known genotypes. The hens were from two closely-related brown layer lines (B1 and B2), and a third distantly-related white layer line (W1). Lines had 1004 to 1023 training animals and 238 to 240 validation animals. Training datasets consisted of animals of either single lines, or a combination of two or all three lines, and had 30 508 to 45 974 segregating single nucleotide polymorphisms.

Results

Genomic prediction models yielded 0.13 to 0.16 higher accuracies than pedigree-based BLUP. When excluding the line itself from the training dataset, genomic predictions were generally inaccurate. Use of multiple lines marginally improved prediction accuracy for B2 but did not affect or slightly decreased prediction accuracy for B1 and W1. Differences between models were generally small except for RRPCA which gave considerably higher accuracies for B2. Correlations between genomic predictions from different methods were higher than 0.96 for W1 and higher than 0.88 for B1 and B2. The greater differences between methods for B1 and B2 were probably due to the lower accuracy of predictions for B1 (~0.45) and B2 (~0.40) compared to W1 (~0.76).

Conclusions

Multi-line genomic prediction did not affect or slightly improved prediction accuracy for closely-related lines. For distantly-related lines, multi-line genomic prediction yielded similar or slightly lower accuracies than single-line genomic prediction. Bayesian variable selection and GBLUP generally gave similar accuracies. Overall, RRPCA yielded the greatest accuracies for two lines, suggesting that using PCA helps to alleviate the “n ≪ p” problem in genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0057-5) contains supplementary material, which is available to authorized users.  相似文献   
119.
Laser scanning confocal microscopy and TEM were used to study the morphology of secondary plastids in algae of the genus Mallomonas (Synurophyceae). At interphase, Mallomonas splendens (G. S. West) Playfair, M. rasilis Dürrschm., M. striata Asmund, and M. adamas K. Harris et W. H. Bradley contained a single H‐shaped plastid consisting of two large lobes connected by a narrow isthmus. Labeling of DNA revealed a necklace‐like arrangement of plastid nucleoids at the periphery of the M. splendens plastid and a less‐patterned array in M. rasilis. The TEM of M. splendens and M. rasilis showed an electron‐dense belt surrounding the plastid isthmus in interphase cells; this putative plastid‐dividing ring (PD ring) was adpressed to the inner pair of the four plastid membranes, suggesting that it is homologous to the PD ring of green and red plastids. The PD ring did not contain actin (indicated by lack of staining with phalloidin) and displayed filaments or tubules of 5–10 nm in diameter that may be homologous to the tubules described in red algal PD rings. Confocal microscopy of chl autofluorescence from M. splendens showed that the plastid isthmus was severed as mitosis began, giving rise to two single‐lobed daughter plastids, which, as mitosis and cell division progressed, separated from one another and then each constricted to form the H‐shaped plastids of daughter cells. Similar plastid division cycles were observed in M. rasilis and M. adamas; however, the plastid isthmus of M. striata was retained throughout most of cell division and was eventually severed by the cell cleavage furrow.  相似文献   
120.
Piezo1 is a mechanosensitive channel involved in many cellular functions and responsible for sensing shear stress and pressure forces in cells. Piezo1 has a unique trilobed topology with a curved membrane region in the closed state. It has been suggested that upon activation Piezo1 adopts a flattened conformation, but the molecular and structural changes underpinning the Piezo1 gating and opening mechanisms and how the channel senses forces in the membrane remain elusive. Here, we used molecular dynamics simulations to reveal the structural rearrangements that occur when Piezo1 moves from a closed to an open state in response to increased mechanical tension applied to a model membrane. We find that membrane stretching causes Piezo1 to flatten and expand its blade region, resulting in tilting and lateral movement of the pore-lining transmembrane helices 37 and 38. This is associated with the opening of the channel and movement of lipids out of the pore region. Our results reveal that because of the rather loose packing of Piezo1 pore region, movement of the lipids outside the pore region is critical for the opening of the pore. Our simulations also suggest synchronous flattening of the Piezo1 blades during Piezo1 activation. The flattened structure lifts the C-terminal extracellular domain up, exposing it more to the extracellular space. Our studies support the idea that it is the blade region of Piezo1 that senses tension in the membrane because pore opening failed in the absence of the blades. Additionally, our simulations reveal that upon opening, water molecules occupy lateral fenestrations in the cytosolic region of Piezo1, which might be likely paths for ion permeation. Our results provide a model for how mechanical force opens the Piezo1 channel and thus how it might couple mechanical force to biological response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号