首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   28篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2017年   3篇
  2016年   8篇
  2015年   13篇
  2014年   20篇
  2013年   18篇
  2012年   9篇
  2011年   18篇
  2010年   11篇
  2009年   15篇
  2008年   18篇
  2007年   19篇
  2006年   11篇
  2005年   16篇
  2004年   14篇
  2003年   15篇
  2002年   9篇
  2001年   14篇
  2000年   15篇
  1999年   7篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   8篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   10篇
  1985年   9篇
  1984年   7篇
  1983年   8篇
  1979年   8篇
  1978年   11篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   13篇
  1973年   7篇
  1972年   6篇
  1969年   3篇
  1968年   5篇
  1967年   6篇
  1931年   3篇
  1930年   3篇
  1929年   3篇
排序方式: 共有479条查询结果,搜索用时 437 毫秒
81.
The 'resource balance hypothesis' proposes that the species richness of grassland vegetation is potentially highest when the N:P ratio of plant tissues is 10–15 (co-limitation), so that species richness could be raised by fertilisation with N or P at sites with lower or higher N:P ratios, respectively. Here we use data from field surveys in Swiss, Dutch and American fens or wet grasslands to analyse what changes in N:P ratios might produce noticeable changes in species richness. Plant species numbers, above-ground biomass, tissue N and P concentrations and soil pH were recorded in plots of 0.06–4 m2. In each data set, plots with intermediate tissue N:P ratios (6–20) were on average most species-rich, but N:P ratios explained only 5–37% of the variation in species richness. Moreover, these effects were partially confounded with those of vegetation biomass and/or soil pH. The unique effects of N:P ratios (excluding those shared with biomass and pH) explained 11–17% of variation in species richness. The relationship between species richness and N:P ratios was asymmetric: plots with high N:P ratios were more species-poor than those with low N:P ratios. This was paralleled by a smaller species pool size at high N:P ratios (estimated from species numbers in multiple records), suggesting that fewer species are adapted to P-limited conditions than to N-limited conditions. According to these data, species richness in wetlands may possibly be raised by P-fertilisation when the initial N:P ratio of the vegetation is well above 20, but this option is not recommended for nature conservation as it might promote common species at the expense of rare ones.  相似文献   
82.
Development of cue integration in human navigation   总被引:1,自引:0,他引:1  
Mammalian navigation depends both on visual landmarks and on self-generated (e.g., vestibular and proprioceptive) cues that signal the organism's own movement [1-5]. When these conflict, landmarks can either reset estimates of self-motion or be integrated with them [6-9]. We asked how humans combine these information sources and whether children, who use both from a young age [10-12], combine them as adults do. Participants attempted to return an object to its original place in an arena when given either visual landmarks only, nonvisual self-motion information only, or both. Adults, but not 4- to 5-year-olds or 7- to 8-year-olds, reduced their response variance when both information sources were available. In an additional "conflict" condition that measured relative reliance on landmarks and self-motion, we predicted behavior under two models: integration (weighted averaging) of the cues and alternation between them. Adults' behavior was predicted by integration, in which the cues were weighted nearly optimally to reduce variance, whereas children's behavior was predicted by alternation. These results suggest that development of individual spatial-representational systems precedes development of the capacity to combine these within a common reference frame. Humans can integrate spatial cues nearly optimally to navigate, but this ability depends on an extended developmental process.  相似文献   
83.
Historically, duplicate genes have been regarded as a major source of novel genetic material. However, recent work suggests that chimeric genes formed through the fusion of pieces of different genes may also contribute to the evolution of novel functions. To compare the contribution of chimeric and duplicate genes to genome evolution, we measured their prevalence and persistence within Drosophila melanogaster. We find that ~80.4 duplicates form per million years, but most are rapidly eliminated from the genome, leaving only 4.1% to be preserved by natural selection. Chimeras form at a comparatively modest rate of ~11.4 per million years but follow a similar pattern of decay, with ultimately only 1.4% of chimeras preserved. We propose two mechanisms of chimeric gene formation, which rely entirely on local, DNA-based mutations to explain the structure and placement of the youngest chimeric genes observed. One involves imprecise excision of an unpaired duplication during large-loop mismatch repair, while the other invokes a process akin to replication slippage to form a chimeric gene in a single event. Our results paint a dynamic picture of both chimeras and duplicate genes within the genome and suggest that chimeric genes contribute substantially to genomic novelty.  相似文献   
84.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
85.
Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin.  相似文献   
86.
87.
88.
Chinese hamster ovary (CHO-K1) cell line and two of its DNA double strand break (DSB) repair deficient mutant cell lines, xrs-5 (Ku80 mutant) and irs-20 (DNA-PKcs mutant), were treated with various concentrations of sodium arsenite for 2.5h, and the colony forming abilities were studied. The wild type cells showed the highest cell survival, while xrs-5 cells showed the lowest survival, and irs-20 cells had an intermediate survival. These results are very similar to the cell survival curves induced by X-rays in these three cell lines. Our data also show the dose dependent induction of DNA-DSBs in these cell lines exposed to arsenite. However, in order to obtain a similar cell survival in wild type cells, twice as many DNA-DSBs are necessary with arsenite exposure when compared with X-rays, suggesting that the types of DNA lesions leading to DSB induced by arsenite are different from those by X-rays. Based on these data, further mechanistic investigations including the involvement of DNA-DSB repair proteins are warranted in the recovery process from arsenic (As) exposure.  相似文献   
89.
90.
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号