首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   79篇
  2018年   4篇
  2015年   7篇
  2014年   6篇
  2013年   10篇
  2012年   12篇
  2011年   13篇
  2010年   11篇
  2009年   7篇
  2008年   8篇
  2007年   16篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   6篇
  2002年   11篇
  2001年   3篇
  2000年   6篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   8篇
  1981年   10篇
  1980年   6篇
  1979年   10篇
  1978年   4篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   4篇
  1968年   3篇
  1966年   3篇
  1965年   3篇
  1932年   3篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
81.
Expression of human IFN-gamma genomic DNA in transgenic mice   总被引:2,自引:0,他引:2  
We have introduced an 8.6-kb fragment of human genomic DNA containing the full length IFN-gamma gene into the mouse germline. The transgenic animals had no biologic or developmental defects as human IFN-gamma does not bind to the mouse IFN R. Regulation of the transgene paralleled that of the endogenous murine IFN-gamma gene in that: 1) it is not expressed constitutively in any tissue examined thus far, 2) it can be induced in thymus and spleen cells by T cell mitogens, 3) it is not expressed in B cells stimulated by LPS, and 4) it produces normal mRNA and biologically active IFN protein. Whereas expression of the transgene is likely restricted to T cells, we had observed that both fibroblasts and B cell lines could express the same DNA when transfected in vitro; this indicates that in vivo, developmental factors restrict expression of the IFN-gamma gene to T cells. These findings also indicate that the 8.6-kb fragment contains the regulatory elements necessary for normal tissue specific expression in vivo. Moreover, they indicate that the regulatory elements for this gene are completely preserved over the phylogenetic distance separating mouse and man, even though substantial drift has occurred in the structural gene, and probably in the IFN-gamma R as well.  相似文献   
82.
83.
B E Beckwith  T P Tinius 《Peptides》1985,6(3):383-386
Male albino rats received vasopressin, vasotocin, pressinoic acid or placebo and were tested on an aversively motivated brightness discrimination task. Treatment with both vasopressin and vasotocin had no effect on acquisition but facilitated the reversal of the discrimination. Pressinoic acid had an inconsistent effect. The results are interpreted to show that the C terminal of the peptides vasopressin and vasotocin influence potency of these peptides. Furthermore, the results are interpreted as showing that both vasotocin and vasopressin influence selective attention during aversively motivated tasks.  相似文献   
84.
Defective and plaque-forming lambdalac transducing phages have been isolated from bacterial strains in which the lactose operon has been genetically transposed to the galactose locus.  相似文献   
85.
In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond, including bacterial virulence factors. Thus, proteins involved in disulfide bond formation represent good targets for the development of inhibitors that can act as antibiotics or anti‐virulence agents, resulting in the simultaneous inactivation of several types of virulence factors. Here, we present evidence that the disulfide bond forming enzymes, DsbB and VKOR, are required for Pseudomonas aeruginosa pathogenicity and Mycobacterium tuberculosis survival respectively. We also report the results of a HTS of 216,767 compounds tested against P. aeruginosa DsbB1 and M. tuberculosis VKOR using Escherichia coli cells. Since both P. aeruginosa DsbB1 and M. tuberculosis VKOR complement an E. coli dsbB knockout, we screened simultaneously for inhibitors of each complemented E. coli strain expressing a disulfide‐bond sensitive β ‐galactosidase reported previously. The properties of several inhibitors obtained from these screens suggest they are a starting point for chemical modifications with potential for future antibacterial development.  相似文献   
86.
Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3–1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1–3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants dl-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.  相似文献   
87.
In order to divide, the bacterium Escherichia coli must assemble a set of at least 10 essential proteins at the nascent division site. These proteins localize to midcell according to a linear hierarchy, suggesting that cell division proteins are added to the nascent divisome in strict sequence. We previously described a method, 'premature targeting', which allows us to target a protein directly to the division site independently of other cell division proteins normally required for its localization at midcell. By systematically applying this method to probe the recruitment of and associations among late cell division proteins, we show that this linear assembly model is likely incorrect. Rather, we find that the assembly of most of the late proteins can occur independently of 'upstream' proteins. Further, most late proteins, when prematurely targeted to midcell, can back-recruit upstream proteins in the reverse of the predicted pathway. Together these observations indicate that the late proteins, with the notable exception of the last protein in the pathway, FtsN, are associated in a hierarchical set of protein complexes. Based on these observations we present a revised model for assembly of the E. coli division apparatus.  相似文献   
88.
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.  相似文献   
89.
Metastatic renal cell carcinoma (RCC) is highly resistant to conventional systemic treatments, including chemotherapy, radiotherapy and hormonal therapies. Previous studies have shown over-expression of EGFR is associated with high grade tumors and a worse prognosis. Recent studies suggest anticancer therapies targeting the EGFR pathway have shown promising results in clinical trials of RCC patients. Therefore, characterization of the level and localization of EGFR expression in RCC is important for target-dependent therapy. In this study, we investigated the clinical significance of cellular localization of EGFR in human normal renal cortex and RCC. RCC and adjacent normal kidney tissues of 63 patients were obtained for characterization of EGFR expression. EGFR protein expression was assessed by immunohistochemistry on a scale from 0 to 300 (percentage of positive cells × staining intensity) and Western blotting. EGFR membranous staining was significantly stronger in RCC tumors than in normal tissues (P < 0.001). In contrast, EGFR cytoplasmic staining was significantly higher in normal than in tumor tissues (P < 0.001). The levels of membranous or cytoplasmic EGFR expression in RCC tissues were not correlated with sex, tumor grade, TNM stage or overall survival (P > 0.05). These results showed abundant expression of membranous EGFR in RCC, and abundant expression of cytoplasmic EGFR in normal tissues. EGFR expression in RCC was mostly located in the cell membrane, whereas the EGFR expression in normal renal tissues was chiefly seen in cytoplasm. Our results suggest different locations of EGFR expression may be associated with human renal tumorigenesis.  相似文献   
90.
Glucose homeostasis in humans is an important factor for the functioning of nervous system. Hypoglycemia and hyperglycemia is found to be associated with central and peripheral nerve system dysfunction. Changes in acetylcholine receptors have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). In the present study we showed the effects of insulin induced hypoglycemia and streptozotocin induced diabetes on the cerebellar cholinergic receptors, GLUT3 and muscle cholinergic activity. Results showed enhanced binding parameters and gene expression of Muscarinic M1, M3 receptor subtypes in cerebellum of diabetic (D) and hypoglycemic group (D + IIH and C + IIH). α7nAchR gene expression showed a significant upregulation in diabetic group and showed further upregulated expression in both D + IIH and C + IIH group. AchE expression significantly upregulated in hypoglycemic and diabetic group. ChAT showed downregulation and GLUT3 expression showed a significant upregulation in D + IIH and C + IIH and diabetic group. AchE activity enhanced in the muscle of hypoglycemic and diabetic rats. Our studies demonstrated a functional disturbance in the neuronal glucose transporter GLUT3 in the cerebellum during insulin induced hypoglycemia in diabetic rats. Altered expression of muscarinic M1, M3 and α7nAchR and increased muscle AchE activity in hypoglycemic rats in cerebellum is suggested to cause cognitive and motor dysfunction. Hypoglycemia induced changes in ChAT and AchE gene expression is suggested to cause impaired acetycholine metabolism in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. The results shows that cerebellar cholinergic neurotransmission is impaired during hyperglycemia and hypoglycemia and the hypoglycemia is causing more prominent imbalance in cholinergic neurotransmission which is suggested to be a cause of cerebellar dysfunction associated with hypoglycemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号