首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2800篇
  免费   297篇
  3097篇
  2021年   34篇
  2020年   21篇
  2019年   33篇
  2018年   28篇
  2017年   24篇
  2016年   40篇
  2015年   83篇
  2014年   103篇
  2013年   131篇
  2012年   124篇
  2011年   138篇
  2010年   76篇
  2009年   79篇
  2008年   115篇
  2007年   125篇
  2006年   110篇
  2005年   100篇
  2004年   81篇
  2003年   85篇
  2002年   80篇
  2001年   80篇
  2000年   83篇
  1999年   75篇
  1998年   46篇
  1997年   40篇
  1996年   39篇
  1995年   35篇
  1994年   21篇
  1993年   22篇
  1992年   45篇
  1991年   51篇
  1990年   51篇
  1989年   59篇
  1988年   45篇
  1987年   51篇
  1986年   42篇
  1985年   38篇
  1984年   39篇
  1983年   49篇
  1982年   36篇
  1981年   21篇
  1980年   26篇
  1979年   41篇
  1977年   31篇
  1975年   24篇
  1974年   25篇
  1972年   34篇
  1971年   21篇
  1968年   25篇
  1967年   22篇
排序方式: 共有3097条查询结果,搜索用时 15 毫秒
31.
32.
We have designed and synthesized a series of novel antisense methylphosphonate oligonucleotide (MPO) cleaving agents that promote site-specific cleavage on a complementary RNA target. These MPOs contain a non- nucleotide-based linking moiety near the middle of the sequence in place of one of the nucleotide bases. The region surrounding the unpaired base on the RNA strand (i.e. the one directly opposite the non-nucleotide-linker) is sensitive to hydrolytic cleavage catalyzed by ethylenediamine hydrochloride. Furthermore, the regions of the RNA comprising hydrogen bonded domains are resistant to cleavage compared with single-stranded RNA alone. Several catalytic moieties capable of supporting acid/base hydrolysis were coupled to the non-nucleotide-based linker via simple aqueous coupling chemistries. When tethered to the MPO in this manner these moieties are shown to catalyze site-specific cleavage on the RNA target without any additional catalyst.  相似文献   
33.
Summary The fatty acid synthetase (FAS) gene FAS1 of the alkane-utilizing yeast Yarrowia lipolytica was cloned and sequenced. The gene is represented by an intron-free reading frame of 6228 by encoding a protein of 2076 amino acids and 229980 Da molecular weight. This protein exhibits a 58% sequence similarity to the corresponding Saccharomyces cerevisiae FAS -subunit. The sequential order of the five FAS1-encoded enzyme domains, acetyl transferase, enoyl reductase, dehydratase and malonyl/palmityl-transferase, is co-linear in both organisms. This finding agrees with available evidence that the functional organization of FAS genes is similar in related organisms but differs considerably between unrelated species. In addition, previously reported conflicting data concerning the 3 end of S. cerevisiae FAS1 were re-examined by genomic and cDNA sequencing of the relevant portion of the gene. Thereby, the translational stop codon was shown to lie considerably downstream of both published termination sites. The S. cerevisiae FAS1 gene thus has a corrected length of 6153 by and encodes a protein of 2051 amino acids and 228667 Da molecular weight.  相似文献   
34.
The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; AT(L)-ACP(L)). The pikromycin TEII exhibited high K(m) values (>100 microm) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both AT(L)-ACP(L) (k(cat)/K(m) 3.3 +/- 1.1 m(-1) s(-1)) and PikAIII (k(cat)/K(m) 2.9 +/- 0.9 m(-1) s(-1)). The TEII exhibited some acyl-group specificity, catalyzing hydrolysis of propionyl (k(cat)/K(m) 15.8 +/- 1.8 m(-1) s(-1)) and butyryl (k(cat)/K(m) 17.5 +/- 2.1 m(-1) s(-1)) derivatives of AT(L)-ACP(L) faster than acetyl (k(cat)/K(m) 4.9 +/- 0.7 m(-1) s(-1)), malonyl (k(cat)/K(m) 3.9 +/- 0.5 m(-1) s(-1)), or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of AT(L)-ACP(L) at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.  相似文献   
35.
Comparisons of the genomic structure of 3 mammalian major histocompatibility complexes (MHCs), human HLA, canine DLA, and feline FLA revealed remarkable structural differences between HLA and the other 2 MHCs. The 4.6-Mb HLA sequence was compared with the 3.9-Mb DLA sequence from 2 supercontigs generated by 7x whole-genome shotgun assembly and 3.3-Mb FLA draft sequence. For FLA, we confirm that 1) feline FLA was split into 2 pieces within the TRIM (member of the tripartite motif) gene family found in human HLA, 2) class II, III, and I regions were placed in the pericentromeric region of the long arm of chromosome B2, and 3) the remaining FLA was located in subtelomeric region of the short arm of chromosome B2. The exact same chromosome break was found in canine DLA structure, where class II, III, and I regions were placed in a pericentromeric region of chromosome 12 whereas the remaining region was located in a subtelomeric region of chromosome 35, suggesting that this chromosome break occurred once before the split of felid and canid more than 55 million years ago. However, significant differences were found in the content of genes in both pericentromeric and subtelomeric regions in DLA and FLA, the gene number, and amplicon structure of class I genes plus 2 other class I genes found on 2 additional chromosomes; canine chromosomes 7 and 18 suggest the dynamic nature in the evolution of MHC class I genes.  相似文献   
36.
37.
Gaucher disease is the most common lysosomal storage disease with a high prevalence in the Ashkenazi Jewish population but it is also present in other populations. The presence of eight mutations (1226G, 1448C, IVS2+1, 84GG, 1504T, 1604T, 1342C and 1297T) and the complete deletion of the β-glucocerebrosidase gene was investigated in 25 unrelated non-Jewish patients with Gaucher’s disease in Germany. In the Jewish population, three of these mutations account for more than 90% of all mutated alleles. In addition, relatives of two patients were included in our study. Restriction fragment length polymorphism analysis and sequencing of PCR products obtained from DNA of peripheral blood leukocytes was performed for mutation analysis. Gene deletion was detected by comparison of radioactively labelled PCR fragments of both the functional β-glucocerebrosidase gene and the pseudogene. Among the unrelated patients, 50 alleles were investigated and the mutations identified in 35 alleles (70%), whereas 15 alleles (30%) remained unidentified. The most prevalent mutation in our group of patients was the 1226G (370Asn→Ser) mutation, accounting for 18 alleles (36%), followed by the 1448C (444Leu→Pro) mutation, that was found in 12 alleles (24%). A complete gene deletion was present in two alleles (4%). The IVS1+2 (splicing mutation), the 1504T (463Arg→Cys) as well as the 1342C (409Asp→His) mutations were each present in one allele (2%). None of the alleles carried the 84GG (frameshift), 1604A (496Arg→His) or the 1297T (394Val→Leu) mutation. This distribution is different from the Ashkenazi Jewish population but is similar to other Caucasian groups like the Spanish and Portuguese populations. Our results confirm the variability of mutation patterns in Gaucher patients of different ethnic origin. All patients were divided into nine groups according to their genotype and their clinical status was related to the individual genotype. Genotype/phenotype characteristics of the 1226G, 1448C, and 1342C mutations of previous studies were confirmed by our results. Received: 19 November 1996 / Revised: 29 January 1997  相似文献   
38.
Process conditions for the acid hydrolysis of pine hemicellulose and cellulose have been described which provide a biocompatible sugar solution. By using an improved strain of recombinant Escherichia coli, strain KO11, hydrolysates supplemented with yeast extract and tryptone nutrients were converted to ethanol with an efficiency of 85% to over 100% on the basis of monomer sugar content (approximately 72 g/liter) and with the production of 35 g of ethanol per liter in 48 h. In the process described, approximately 347 liters of ethanol could be produced per dry metric ton of lignocellulose.  相似文献   
39.
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.  相似文献   
40.
The phenotype of a mother and the environment that she provides might differentially affect the phenotypes of her sons and daughters, leading to change in sexual size dimorphism. Whereas these maternal effects should evolve to accommodate the adaptations of both the maternal and offspring generations, the mechanisms by which this is accomplished are rarely known. In birds, females adjust the onset of incubation (coincident with the first egg or after all eggs are laid) in response to the environment during breeding, and thus, indirectly, determine the duration of offspring growth. In the two house finch (Carpodacus mexicanus) populations that breed at the extremes of the species' distribution (Montana and Alabama), females experience highly distinct climatic conditions during nesting. We show that in close association with these conditions, females adjusted jointly the onset of incubation and the sequence in which they produced male and female eggs and consequently modified the growth of sons and daughters. The onset of incubation in newly breeding females closely tracked ambient temperature in a pattern consistent with the maintenance of egg viability. Because of the very different climates in Montana and Alabama, females in these populations showed the opposite patterns of seasonal change in incubation onset and the opposite sex bias in egg-laying order. In females with breeding experience, incubation onset and sex bias in laying order were closely linked regardless of the climatic variation. In nests in which incubation began with the onset of egg laying, the first-laid eggs were mostly females in Montana, but mostly males in Alabama. Because in both populations, male, but not female, embryos grew faster when exposed to longer incubation, the sex-bias produced highly divergent sizes of male and female juveniles between the populations. Overall, the compensatory interaction between the onset of incubation and the sex-biased laying order achieved a compromise between maternal and offspring adaptations and contributed to rapid morphological divergence in sexual dimorphism between populations of the house finch breeding at the climatic extremes of the species range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号