首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   6篇
  2023年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有53条查询结果,搜索用时 296 毫秒
21.
A 50 kb region of DNA fromStreptomyces violaceoruber Tü22, containing genes encoding proteins involved in the biosynthesis of granaticin, was isolated. The DNA sequence of a 7.3 kb fragment from this region, located approximately 10 kb from the genes that encode the polyketide synthetase responsible for formation of the benzoisochromane quinone skeleton, revealed five open reading frames (ORF1-ORF5). The deduced amino acid sequence of GraE, encoded by ORF2, shows 60.8% identity (75.2% similarity) to a dTDP-glucose dehydratase (StrE) fromStreptomyces griseus. Cultures ofEscherichia coli containing plasmids with ORF2, on a 2.1 kbBamHI fragment, were able to catalyze the formation of dTDP-4-keto-6-deoxy-d-glucose from dTDP-glucose at 5 times the rate of control cultures, confirming that ORF2 encodes a dTDP-glucose dehydratase. The amino acid sequence encoded by ORF3 (GraD) is 51.4% identical (69.9% similar) to that of StrD, a dTDP-glucose synthase fromStreptomyces griseus. The amino acid sequence encoded by ORF4 shares similarities with proteins that confer resistance to tetracycline and methylenomycin, and is suggested to be involved in transporting granaticin out of the cells by an active efflux mechanism.  相似文献   
22.
23.
The prx gene, which is highly homologous to putative proteinases, has been identified by sequencing in the vicinity of the biosynthetic gene cluster for landomycin E (LaE) biosynthesis (lnd) in Streptomyces globisporus 1912. The S. globisporus Pro6 gene, deficient in prx, produced fivefold less LaE than the parental strain. The expression of prx in S. globisporus Pro6 restored LaE production to wild-type levels, whereas expression of the pathway-specific regulatory gene lndI did not. The introduction of additional copies of prx into the wild-type strain using a pSG5-based plasmid, pKC1139, led to a 2.7-fold increase in LaE production. These results indicate that prx is a novel regulatory gene for LaE biosynthesis.  相似文献   
24.
Mobilizable shuttle plasmids containing the origin of transfer (oriT) region of plasmid F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPα) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Streptomyces. The conjugative system of the IncPα plasmids was shown to be most effective in conjugative transfer, giving peak values of (2.7 ± 0.2) × 10−2 S. lividans TK24 exconjugants per recipient cell. To assess whether the mating-pair formation system or the DNA-processing apparatus of the IncPα plasmids is crucial in conjugative transfer, an assay with an IncQ-based mobilizable plasmid (RSF1010) specifying its own DNA-processing system was developed. Only the IncPα plasmid mobilized the construct to S. lividans indicating that the mating-pair formation system is primarly responsible for the promiscuous transfer of the plasmids between E. coli and Streptomyces. Dynamic of conjugative transfer from E. coli to S. lividans was investigated and exconjugants starting from the first hour of mating were obtained. The text was submitted by the authors in English.  相似文献   
25.
Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production—bldA, adpA and absB—exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNALeuUAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs—that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.  相似文献   
26.
In Streptomyces cyanogenus S136 gene cluster for biosynthesis of polyglycosylated angucycline landomycin A (LaA), a divergently oriented gene pair for a TetR-family regulator ( lanK ) and an efflux protein ( lanJ ) is located, whose functions remained obscure. Overexpression and disruption studies showed that lanK and lanJ genes control LaA resistance. Also, a constitutive lanK overexpression led to predominant accumulation of LaA precursors bearing shorter glycoside chains. These data as well as the results of in vitro and in vivo assays of LanK activity are consistent with the idea that LanK represses lanJ and some downstream genes involved in conversion of landomycin D (a disaccharide LaA precursor) into LaA. LaA and some of its precursors accumulate in the producing cell and relieve repression by LanK, thus amplifying the biosynthesis and export of landomycins with long glycoside chains. Therefore, the main biological role of LanK appears to be the inhibition of premature extrusion of early LaA precursors from the cells, which in turn creates the optimal conditions for accumulation of LaA as the major landomycin in S. cyanogenus S136.  相似文献   
27.
The elevated relative biological effectiveness (RBE) of heavy ions like carbon is the main reason for their use in radiotherapy and is due to the microscopic distribution of dose inside each particle track. High local doses produce lesions that are expected to have a diminished possibility of repair. Thus, RBE depends on track structure and on the biological repair capacity of the tissue that is affected by the irradiation. For tumor treatment planning with heavy ions, the beam quality and the tissue sensitivity have to be taken into account. Using the dependence of radial dose distribution on particle energy and atomic number on the physical side and x-ray dose response for the repair capacity on the biological side, the response to particle irradiation can be calculated in the local effect model (LEM) and used for treatment planning. This article traces the route from electron emission as the basis of track structure to the RBE calculation and the application in treatment planning. Received: 21 April 1999 / Accepted in revised form: 1 September 1999  相似文献   
28.
29.
From a cosmid library of Streptomyces cyanogenus S136, DNA fragments encompassing approximately 35 kb of the presumed landomycin biosynthetic gene cluster were identified and sequenced, revealing 32 open reading frames most of which could be assigned through data base comparison.  相似文献   
30.
Analysis of the α-lipomycin biosynthesis gene cluster of Streptomyces aureofaciens Tü117 led to the identification of five putative regulatory genes, which are congregated into a subcluster. Analysis of the lipReg1–4 and lipX1 showed that they encode components of two-component signal transduction systems (LipReg1 and LipReg2), multiple antibiotics resistance-type regulator (LipReg3), large ATP-binding regulators of the LuxR family-type regulator (LipReg4), and small ribonuclease (LipRegX1), respectively. A combination of targeted gene disruptions, complementation experiments, lipomycin production studies, and gene expression analysis via RT-PCR suggests that all regulatory lip genes are involved in α-lipomycin production. On the basis of the obtained data, we propose that LipReg2 controls the activity of LipReg1, which in its turn govern the expression of the α-lipomycin pathway-specific regulatory gene lipReg4. The ribonuclease gene lipX1 and the transporter regulator lipReg3 appear to work independently of genes lipReg1, lipReg2, and lipReg4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号