首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   17篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   11篇
  2004年   3篇
  2003年   11篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   5篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1959年   1篇
  1951年   1篇
  1945年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
101.
102.
The development of a human immunodeficiency virus type 1 (HIV-1) vaccine that elicits potent cellular and humoral immune responses recognizing divergent strains of HIV-1 will be critical for combating the global AIDS epidemic. The present studies were initiated to examine the magnitude and breadth of envelope (Env)-specific T-lymphocyte and antibody responses generated by vaccines containing either a single or multiple genetically distant HIV-1 Env immunogens. Rhesus monkeys were immunized with DNA prime-recombinant adenovirus boost vaccines encoding a Gag-Pol-Nef polyprotein in combination with either a single Env or a mixture of clade-A, clade-B, and clade-C Envs. Monkeys receiving the multiclade Env immunization developed robust immune responses to all vaccine antigens and, importantly, a greater breadth of Env recognition than monkeys immunized with vaccines including a single Env immunogen. All groups of vaccinated monkeys demonstrated equivalent immune protection following challenge with the pathogenic simian-human immunodeficiency virus 89.6P. These data suggest that a multicomponent vaccine encoding Env proteins from multiple clades of HIV-1 can generate broad Env-specific T-lymphocyte and antibody responses without antigenic interference. This study demonstrates that it is possible to generate protective immune responses by vaccination with genetically diverse isolates of HIV-1.  相似文献   
103.
Catalytically active crystals of rabbit skeletal muscle aldolase are inactivated by phosphate ion and D-glyceraldehyde-3-phosphate. Four moles of phosphate are incorporated per mole of tetrameric enzyme. The inactivation rates are first order in time and demonstrate saturation behaviour. Competition inactivation experiments are consistent with the two substrates competing for the same site on the enzyme. Protection is afforded by substrates binding to the active site on the enzyme. No phosphate inactivation is observed in solution under identical experimental conditions and D-glyceraldehyde-3-phosphate inactivation in solution is unaffected by phosphate ion concentrations. Inactivation by phosphate is apparently due to an unique enzyme conformation stabilized upon protein crystallization.  相似文献   
104.
Twenty-three children with chronic severe perennial asthma received randomly-allocated disodium cromoglycate or placebo four times a day for 12 weeks, and the alternative regimen for the subsequent 12 weeks. More than half the patients improved while on DSCG according to clinical assessment. There was a significant increase in the mean FEV0·75 second during the drug period, largely owing to dramatic improvement in nine patients. No reduction in the mean decrease of FEV after exercise was demonstrated. Response, when it occurred, was evident within four weeks. The effect of the medication was consistent in individual patients throughout the 12-week period. No evidence of toxicity was discovered during the period of study.  相似文献   
105.
106.
K J Desmond  A L Coates  P H Beaudry 《CMAJ》1984,131(4):325-326
To assess whether it would be possible to avoid repeated arterial blood sampling in children with cystic fibrosis, the relation between the forced expiratory flow at 25% to 75% of the vital capacity (FEF25%-75%) and the partial pressure of arterial oxygen (PaO2) was examined. The PaO2 and the logarithm of the FEF25%-75% (expressed as a percentage of that predicted) showed the strongest correlation (r = 0.89, p less than 0.001). Although this relation cannot be used when an accurate value for the PaO2 is required, it can sometimes be useful for determining the need for an arterial puncture.  相似文献   
107.
Glandular secreting trichomes of cultivated tomato (Solanum lycopersicum) produce a wide array of volatile and nonvolatile specialized metabolites. Many of these compounds contribute to the characteristic aroma of tomato foliage and constitute a key part of the language by which plants communicate with other organisms in natural environments. Here, we describe a novel recessive mutation called odorless-2 (od-2) that was identified on the basis of an altered leaf-aroma phenotype. od-2 plants exhibit pleiotrophic phenotypes, including alterations in the morphology, density, and chemical composition of glandular trichomes. Type VI glandular trichomes isolated from od-2 leaves accumulate only trace levels of monoterpenes, sesquiterpenes, and flavonoids. Other foliar defensive compounds, including acyl sugars, glycoalkaloids, and jasmonate-regulated proteinase inhibitors, are produced in od-2 leaves. Growth of od-2 plants under natural field conditions showed that the mutant is highly susceptible to attack by an indigenous flea beetle, Epitrix cucumeris, and the Colorado potato beetle, Leptinotarsa decemlineata. The increased susceptibility of od-2 plants to Colorado potato beetle larvae and to the solanaceous specialist Manduca sexta was verified in no-choice bioassays. These findings indicate that Od-2 is essential for the synthesis of diverse trichome-borne compounds and further suggest that these compounds influence host plant selection and herbivore community composition under natural conditions.The plant epidermal surface provides a formidable protective barrier to invasion by pathogens and arthropod herbivores. Hair-like protuberances, called trichomes, are among the most conspicuous defense-related structures on the aerial epidermis of leaves, stems, and floral organs. Trichomes are typically classified morphologically as being either nonglandular or glandular. Nonglandular trichomes physically impede the movement of small arthropod herbivores on the plant surface. Molecular and ecological studies indicate that trichome density is both a highly adaptive and a functionally important trait for resistance to herbivory (Kennedy, 2003; Kivimaki et al., 2007). In-depth knowledge of the molecular mechanisms that control trichome development in Arabidopsis (Arabidopsis thaliana), which produces unicellular nonglandular trichomes, has provided significant insight into the genetic basis of variation in trichome habit (Marks, 1997; Karkkainen and Agren, 2002; Yoshida et al., 2009).In contrast to our understanding of nonglandular trichomes, much less is known about the development and ecological function of glandular trichomes, many of which are multicellular. These epidermal structures synthesize a diverse array of specialized (i.e. secondary) metabolites that exert toxic or repellent effects on myriad phytophagous animals (Kennedy, 2003; Shepherd et al., 2005; Schilmiller et al., 2008). Rupture of the cuticle upon insect contact releases gland contents, which can rapidly oxidize to form a sticky exudate that physically entraps small insects. Among the major classes of compounds involved in trichome-mediated resistance are terpenoids, alkaloids, flavonoids, and defensive proteins (Shepherd and Wagner, 2007; Schilmiller et al., 2008). Large-scale sequencing of ESTs isolated from purified glands has provided unprecedented insight into the biochemical pathways that operate in glandular trichomes (Lange et al., 2000; Aziz et al., 2005; Wang et al., 2008, 2009; Xie et al., 2008; Schilmiller et al., 2009a; Dai et al., 2010). Many key biosynthetic genes in these pathways have been identified and characterized (Iijima et al., 2004; Falara et al., 2008; Slocombe et al., 2008; Ben-Israel et al., 2009; Marks et al., 2009; Schilmiller et al., 2009a).Cultivated tomato (Solanum lycopersicum) and its wild relatives produce several different types of nonglandular and glandular trichomes on aerial tissues (Luckwill, 1943; Kang et al., 2010). The chemical composition of glandular trichomes varies significantly within and between tomato species (Antonious, 2001; Schilmiller et al., 2008; Besser et al., 2009). Acyl sugars secreted by Solanum pennellii type IV trichomes provide effective resistance to a wide range of insects (Goffreda et al., 1990; Rodriguez et al., 1993; Juvik et al., 1994). Methyl ketone and sesquiterpene derivatives produced in type VI glands of Solanum habrochaites also exert powerful toxic and repellent effects on numerous insect pests (Williams et al., 1980; Maluf et al., 2001; Antonious and Snyder, 2006). Recent studies indicate that trichomes are also an important component of induced anti-insect defenses that are regulated by the plant hormone jasmonate (JA). For example, the density of type VI trichomes on tomato leaves is regulated by the JA pathway (Li et al., 2004; Boughton et al., 2005; Peiffer et al., 2009). JA also plays a role in controlling the accumulation of defense-related terpenoids in type VI glands (Li et al., 2004; van Schie et al., 2007). Recent studies provide evidence that type VI trichomes accumulate JA and may function as sensors for detecting insect movement on the leaf surface (Peiffer et al., 2009). These collective observations highlight the importance of glandular trichomes in shaping plant-insect relations.Our current understanding of the role of trichomes in mediating S. lycopersicum interaction with arthropod herbivores comes mainly from insect bioassays performed under controlled laboratory conditions (Kennedy, 2003; Li et al., 2004; Bleeker et al., 2009; Peiffer et al., 2009; Kang et al., 2010). Much less is known about the ecological relevance of trichomes in tomato plants grown under more natural conditions in the field. Here, we report the characterization of a tomato mutant, odorless-2 (od-2), that was identified on the basis of an altered leaf-aroma phenotype. This mutant exhibits defects in the development and density of glandular trichomes. Detailed chemical analysis of isolated type VI glands showed that od-2 disrupts the production of diverse specialized metabolites, including volatile terpenes and flavonoids. Consistent with important ecological roles for these compounds in host plant selection and defense, we show that od-2 plants are highly susceptible to natural populations of insect herbivores. Our results suggest that trichome-based chemical defenses play a major role in the resistance of cultivated tomato to opportunistic herbivores and also influence herbivore community composition under natural conditions.  相似文献   
108.
109.
We performed comparative profiling of four specialized metabolites in the lichen Evernia prunastri, collected at three different geographic locations, California and Maine, USA, and Yoshkar Ola, Mari El, Russia. Among the compounds produced at high concentrations that were identified in all three specimens, evernic acid, usnic acid, lecanoric acid and chloroatranorin, evernic acid was the most abundant. Two depsidones, salazinic acid and physodic acid, were detected in the Yoshkar‐Ola collection only. The crystalline structure of evernic acid (2‐hydroxy‐4‐[(2‐hydroxy‐4‐methoxy‐6‐methylbenzoyl)oxy]‐6‐methylbenzoate) (hmb) revealed two crystallographically and conformationally distinct hmb anions, along with two monovalent sodium atoms. One hmb moiety contained an exotetradentate binding mode to sodium, whereas the other exhibited an exohexadentate binding mode to sodium. Embedded edge‐sharing {Na2O8}n sodium‐oxygen chains connected the hmb anions into the full three‐dimensional crystal structure of the title compound. The crystal used for single‐crystal X‐ray diffraction exhibited non‐merohedral twinning. The data suggest the importance of the acetyl‐polymalonyl pathway products to processes of maintaining integrity of the lichen holobiont community.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号