首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1164篇
  免费   72篇
  2023年   6篇
  2022年   13篇
  2021年   16篇
  2020年   7篇
  2019年   14篇
  2018年   11篇
  2017年   12篇
  2016年   20篇
  2015年   47篇
  2014年   57篇
  2013年   53篇
  2012年   90篇
  2011年   90篇
  2010年   47篇
  2009年   34篇
  2008年   63篇
  2007年   86篇
  2006年   64篇
  2005年   56篇
  2004年   44篇
  2003年   51篇
  2002年   60篇
  2001年   18篇
  2000年   13篇
  1999年   16篇
  1998年   26篇
  1997年   15篇
  1996年   14篇
  1995年   22篇
  1994年   12篇
  1993年   15篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   12篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   6篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   9篇
  1973年   4篇
  1972年   3篇
  1970年   3篇
  1959年   4篇
排序方式: 共有1236条查询结果,搜索用时 46 毫秒
101.
The reason for holding a meeting to discuss biological challenges to vaccines is simple: not all vaccines work equally well in all settings. This special issue reviews the performance of vaccines in challenging environments, summarizes current thinking on the reasons why vaccines underperform and considers what approaches are necessary to understand the heterogeneity in responses and to improve vaccine immunogenicity and efficacy.  相似文献   
102.
Saccharomyces cerevisiae Msl5 orchestrates spliceosome assembly by binding the intron branchpoint sequence 5′-UACUAAC and, with its heterodimer partner protein Mud2, establishing cross intron-bridging interactions with the U1 snRNP at the 5′ splice site. Here we define the central Msl5 KH-QUA2 domain as sufficient for branchpoint RNA recognition. The 1.8 Å crystal structure of Msl5-(KH-QUA2) bound to the branchpoint highlights an extensive network of direct and water-mediated protein–RNA and intra-RNA atomic contacts at the interface that illuminate how Msl5 recognizes each nucleobase of the UACUAAC element. The Msl5 structure rationalizes a large body of mutational data and inspires new functional studies herein, which reveal how perturbations of the Msl5·RNA interface impede the splicing of specific yeast pre-mRNAs. We also identify interfacial mutations in Msl5 that bypass the essentiality of Sub2, a DExD-box ATPase implicated in displacing Msl5 from the branchpoint in exchange for the U2 snRNP. These studies establish an atomic resolution framework for understanding splice site selection and early spliceosome dynamics.  相似文献   
103.
Yhc1 and U1-C are essential subunits of the yeast and human U1 snRNP, respectively, that stabilize the duplex formed by U1 snRNA at the pre-mRNA 5′ splice site (5′SS). Mutational analysis of Yhc1, guided by the human U1 snRNP crystal structure, highlighted the importance of Val20 and Ser19 at the RNA interface. Though benign on its own, V20A was lethal in the absence of branchpoint-binding complex subunit Mud2 and caused a severe growth defect in the absence of U1 subunit Nam8. S19A caused a severe defect with mud2▵. Essential DEAD-box ATPase Prp28 was bypassed by mutations of Yhc1 Val20 and Ser19, consistent with destabilization of U1•5′SS interaction. We extended the genetic analysis to SmD3, which interacts with U1-C/Yhc1 in U1 snRNP, and to SmB, its neighbor in the Sm ring. Whereas mutations of the interface of SmD3, SmB, and U1-C/Yhc1 with U1-70K/Snp1, or deletion of the interacting Snp1 N-terminal peptide, had no growth effect, they elicited synthetic defects in the absence of U1 subunit Mud1. Mutagenesis of the RNA-binding triad of SmD3 (Ser-Asn-Arg) and SmB (His-Asn-Arg) provided insights to built-in redundancies of the Sm ring, whereby no individual side-chain was essential, but simultaneous mutations of Asn or Arg residues in SmD3 and SmB were lethal. Asn-to-Ala mutations SmB and SmD3 caused synthetic defects in the absence of Mud1 or Mud2. All three RNA site mutations of SmD3 were lethal in cells lacking the U2 snRNP subunit Lea1. Benign C-terminal truncations of SmD3 were dead in the absence of Mud2 or Lea1 and barely viable in the absence of Nam8 or Mud1. In contrast, SMD3-E35A uniquely suppressed the temperature-sensitivity of lea1▵.  相似文献   
104.
105.
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short‐lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle‐aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age‐related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β‐catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish.  相似文献   
106.
Strigolactones are a novel class of plant hormones controlling shoot branching in seed plants. They also signal host root proximity during symbiotic and parasitic interactions. To gain a better understanding of the origin of strigolactone functions, we characterised a moss mutant strongly affected in strigolactone biosynthesis following deletion of the CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) gene. Here, we show that wild-type Physcomitrella patens produces and releases strigolactones into the medium where they control branching of protonemal filaments and colony extension. We further show that Ppccd8 mutant colonies fail to sense the proximity of neighbouring colonies, which in wild-type plants causes the arrest of colony extension. The mutant phenotype is rescued when grown in the proximity of wild-type colonies, by exogenous supply of synthetic strigolactones or by ectopic expression of seed plant CCD8. Thus, our data demonstrate for the first time that Bryophytes (P. patens) produce strigolactones that act as signalling factors controlling developmental and potentially ecophysiological processes. We propose that in P. patens, strigolactones are reminiscent of quorum-sensing molecules used by bacteria to communicate with one another.  相似文献   
107.
Competition elevates plasma testosterone in a wide variety of vertebrates, including humans. The ‘challenge hypothesis’ proposes that seasonal peaks in testosterone during breeding are caused by social challenges from other males. However, during experimentally induced male–male conflicts, testosterone increases only in a minority of songbird species tested so far. Why is this so? Comparative evidence suggests that species with a short breeding season may not elevate testosterone levels during territory defence. These species may even be limited in their physiological capability to increase testosterone levels, which can be tested by injecting birds with gonadotropin-releasing hormone (GnRH). We studied two populations of black redstarts that differ in breeding altitude, morphology and the length of their breeding season. Unexpectedly, males of neither population increased testosterone in response to a simulated territorial intrusion, but injections with GnRH resulted in a major elevation of testosterone. Thus, black redstarts would have been capable of mounting a testosterone response during the male–male challenge. Our data show, for the first time, that the absence of an androgen response to male–male challenges is not owing to physiological limitations to increase testosterone. Furthermore, in contrast to comparative evidence between species, populations of black redstarts with a long breeding season do not show the expected elevation in testosterone during male–male challenges.  相似文献   
108.
Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson''s disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP''s main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients.  相似文献   
109.
Mass spectrometry techniques have enabled the identification of different lipid metabolites and mediators derived from omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA) that are implicated in various biological processes. However, the broad-spectrum assessment of physiologically formed lipid metabolites and mediators in blood samples has not been presented so far. Here lipid mediators and metabolites of the n-6 PUFA arachidonic acid as well as the long-chain n-3 PUFA eicosapentaenoic acids (EPA) and docosahexaenoic acid (DHA) were measured in human blood samples as well as in mouse blood. There were detectable but mostly very low amounts of the assayed compounds in human native plasma samples, whereas in vitro activation of whole blood with the calcium ionophore A23187 led to highly significant increases of metabolite formation, with a predominance of the 12-lipoxygenase (12-LOX) products 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHA). A23187 activation also led to significant increases in the formation of 5-LOX products including leukotriene B(4) (LTB(4)), leukotriene B(5) (LTB(5)) as well as of 15-LOX products and prostaglandin E(2) (PGE(2)) and thromboxane B(2) (TXB(2)). Levels were similar or even higher in A23187-activated mouse blood. The approach presented here thus provides a protocol for the comprehensive and concomitant assessment of the generation capacity of n-3 and n-6 PUFA-derived lipid metabolites as well as thromboxanes and prostaglandins in human and murine blood samples. Further studies will now have to evaluate lipid metabolite generation capacity in different physiological and pathophysiological contexts.  相似文献   
110.
The integrin α2β1 plays an important role in force-transmitting cell-matrix interactions. It recognizes the peptide sequence GFOGER (O=4-hydroxy-proline) presented as trimer within a collagenous triple-helical framework. We produced the recombinant non-hydroxylated mini-collagen, termed FC3, which harbors the α2β1 integrin recognition site. FC3 consists of a foldon-stabilized host triple helix of three chains with 10 GPP-repeats, into which the integrin binding motif was inserted. The triple-helical structure could further be stabilized by covalently cross-linking the three chains. Unlike collagen-I, FC3 lacks binding sites for matrix proteins and cellular receptors other than the collagen-binding integrins. It showed a preference for α2β1 over α1β1 integrin, especially when the chains were neither cross-linked nor prolyl-hydroxylated. Using FC3 as substratum for primary skin fibroblasts, we showed that the loss of α2β1 integrin could not be compensated by other collagen-binding integrins, suggesting a major role of α2β1 integrin in exerting sufficient mechanical force to induce or sustain cell spreading. Atomic force microscopy revealed that a single α2β1 integrin can withstand tensile forces of up to approximately 160pN before it releases FC3. Moreover, FC3 is fully competent to agonistically elicit α2β1 integrin-induced cell reactions, such as recruitment of α2β1 integrin into focal adhesions and lamellipodia formation. The biofunctionalized mini-collagen sheds light on the molecular forces of the α2β1 integrin-collagen interaction, which affects tissue homeostasis by contracting the connective tissue and by contributing to interstitial tissue pressure regulation. Additionally, biofunctionalized mini-collagens can be useful in force-resistant cell attachment to biomedical materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号