首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1086篇
  免费   69篇
  2023年   6篇
  2022年   8篇
  2021年   16篇
  2020年   6篇
  2019年   14篇
  2018年   11篇
  2017年   12篇
  2016年   19篇
  2015年   47篇
  2014年   54篇
  2013年   51篇
  2012年   86篇
  2011年   89篇
  2010年   48篇
  2009年   34篇
  2008年   65篇
  2007年   84篇
  2006年   63篇
  2005年   56篇
  2004年   43篇
  2003年   50篇
  2002年   60篇
  2001年   17篇
  2000年   13篇
  1999年   16篇
  1998年   24篇
  1997年   14篇
  1996年   15篇
  1995年   22篇
  1994年   11篇
  1993年   15篇
  1992年   9篇
  1991年   7篇
  1990年   8篇
  1989年   13篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   1篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   1篇
  1970年   1篇
排序方式: 共有1155条查询结果,搜索用时 31 毫秒
991.
The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+ VEGFR1+ hematopoietic progenitors, 'hemangiocytes,' constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induced the release of SDF-1 from platelets, enhancing neovascularization through mobilization of CXCR4+ VEGFR1+ hemangiocytes. Although revascularization of ischemic hindlimbs was partially diminished in mice deficient in both GM-CSF and G-CSF (Csf2-/- Csf3-/-), profound impairment in neovascularization was detected in sKitL-deficient Mmp9-/- as well as thrombocytopenic Thpo-/- and TPO receptor-deficient (Mpl-/-) mice. SDF-1-mediated mobilization and incorporation of hemangiocytes into ischemic limbs were impaired in Thpo-/-, Mpl-/- and Mmp9-/- mice. Transplantation of CXCR4+ VEGFR1+ hemangiocytes into Mmp9-/- mice restored revascularization, whereas inhibition of CXCR4 abrogated cytokine- and VEGF-A-mediated mobilization of CXCR4+ VEGFR1+ cells and suppressed angiogenesis. In conclusion, hematopoietic cytokines, through graded deployment of SDF-1 from platelets, support mobilization and recruitment of CXCR4+ VEGFR1+ hemangiocytes, whereas VEGFR1 is essential for their angiogenic competency for augmenting revascularization. Delivery of SDF-1 may be effective in restoring angiogenesis in individuals with vasculopathies.  相似文献   
992.
Purpose of this work was to test the effect of tumour-cell-derived keratinocyte growth factor (KGF) or recombinant KGF (palifermin) on cell proliferation and radiation response of human HNSCC cells and normal keratinocytes in vitro. Four tumour cell cultures derived from head and neck squamous cell carcinomas, primary keratinocytes, and immortalized keratinocytes were analysed. Fibroblasts, the natural source of KGF protein, served as controls. KGF expression was observed in primary and immortalized keratinocytes, fibroblasts, and in tumour cells, while significant KGF receptor expression was only found in keratinocytes. Recombinant KGF as well as tumour-cell-derived KGF caused a significant growth stimulation and radioprotection in keratinocytes, which was abolished by a neutralizing anti-KGF antibody. This indicates that tumour-cell-derived KGF is biologically active. In the tumour cell lines, no significant growth stimulation was induced by recombinant KGF, and the neutralizing antibody did not influence tumour cell growth or radiation response. Our results indicate that the normal, paracrine KGF regulatory mechanisms, which are based on KGF receptor expression, are lost in malignant cells, with the consequence of irresponsiveness of the tumour cells to exogenous KGF. In face of the amelioration of the radiation response of normal epithelia, demonstrated in various clinical and various preclinical animal studies, recombinant KGF represents a candidate for the selective protection of normal epithelia during radio(chemo) therapy of squamous cell carcinoma.  相似文献   
993.
Airways secrete considerable amounts of acid. In this study, we investigated the identity and the pH-dependent function of the apical H+ channel in the airway epithelium. In pH stat recordings of confluent JME airway epithelia in Ussing chambers, Zn-sensitive acid secretion was activated at a mucosal threshold pH of ∼7, above which it increased pH-dependently at a rate of 339 ± 34 nmol × h−1 × cm−2 per pH unit. Similarly, H+ currents measured in JME cells in patch clamp recordings were readily blocked by Zn and activated by an alkaline outside pH. Small interfering RNA–mediated knockdown of HVCN1 mRNA expression in JME cells resulted in a loss of H+ currents in patch clamp recordings. Cloning of the open reading frame of HVCN1 from primary human airway epithelia resulted in a wild-type clone and a clone characterized by two sequential base exchanges (452T>C and 453G>A) resulting in a novel missense mutation, M91T HVCN1. Out of 95 human genomic DNA samples that were tested, we found one HVCN1 allele that was heterozygous for the M91T mutation. The activation of acid secretion in epithelia that natively expressed M91T HVCN1 required ∼0.5 pH units more alkaline mucosal pH values compared with wild-type epithelia. Similarly, activation of H+ currents across recombinantly expressed M91T HVCN1 required significantly larger pH gradients compared with wild-type HVCN1. This study provides both functional and molecular indications that the HVCN1 H+ channel mediates pH-regulated acid secretion by the airway epithelium. These data indicate that apical HVCN1 represents a mechanism to acidify an alkaline airway surface liquid.  相似文献   
994.
This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii.  相似文献   
995.
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.  相似文献   
996.
BACKGROUND: Mast cells are resident tissue cells that induce anaphylactic reactions by rapidly releasing mediators after antigen-mediated cross-linking of immunoglobulin E receptors. In the similarly active peripheral blood basophilic leukocyte, lysosome-associated membrane protein 3 (LAMP-3; CD63) has been described as an activation marker, but LAMPs have not been investigated in normal tissue mast cells. METHODS: Intra- and extracellular expressions of LAMP-1 (CD107a), LAMP-2 (CD107b), and LAMP-3 (CD63) were analysed by flow cytometry, immunocytochemistry, and functional assays in unstimulated and stimulated leukemic human mast cell line 1 (HMC-1) and skin mast cells. RESULTS: On flow cytometry, all mast cells expressed LAMP-3 at their cell membranes, whereas LAMP-1 and LAMP-2 were barely detectable (HMC-1 cells) or expressed at low levels (<10% of skin mast cells). After fixation and permeabilisation, high intracellular levels of all three LAMPs were noted in both cell types. After stimulation, a rapid translocation of intracellular LAMPs to the cell membrane, with an associated release of histamine, leukotriene C(4) and prostaglandin D(2), was ascertained in skin mast cells only. CONCLUSION: These results show that LAMP-1 and LAMP-2 are activation markers for normal mast cells. The lack of LAMP translocation after activation of leukemic mast cells may be related to maturation or malignancy-associated defects of these cells.  相似文献   
997.
Objective: To investigate the effect of breastfeeding in healthy boys and girls on their trajectories of percent body fat (%BF) and BMI standard deviation scores (BMI–SDS) throughout childhood. Methods and Procedures: Analyses of the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study included data from 219 male and 215 female term participants, born between 1984 and 1999, with repeated anthropometric measurements between 0.5 and 7 years and prospective data on duration of breastfeeding. Results: Among boys with an overweight mother (OW‐M), analyses adjusted for potential confounders revealed that not or shortly breastfed (≤17 weeks) boys did not experience the age‐dependent decrease in %BF seen in all children with normal weight mothers (NW‐Ms). In contrast, boys fully breastfed for >17 weeks were protected against the adverse effect of maternal overweight (effect of long breastfeeding vs. no/short breastfeeding among boys with OW‐Ms: 0.46%/year; s.e. 0.18; P = 0.01). There was also a suggestion of an interaction between maternal overweight and breastfeeding for the BMI–SDS trajectory (0.08 SDS/year; s.e. 0.04; P = 0.07). Among boys with NW‐Ms mothers and the corresponding subgroups of girls, breastfeeding had little effect on the development of %BF or BMI–SDS throughout childhood. Discussion: Our study suggests that breastfeeding could offset a potential programming effect for childhood adiposity among boys with OW‐Ms, to whom advice to breast‐feed should thus be specifically targeted.  相似文献   
998.
Irradiation of mammalian cells with solar light is associated with the generation of reactive oxygen species (ROS) and oxidative stress, which is mediated in part by endogenous photosensitizers absorbing in the visible range of the solar spectrum. Accordingly, oxidative DNA base modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are the predominant types of DNA damage in cells irradiated at wavelengths >400 nm. We have analysed the repair of oxidative purine modifications in human skin fibroblasts and melanoma cells using an alkaline elution technique, both under normal conditions and after depletion of glutathione. Similar repair rates were observed in fibroblasts and melanoma cells from three different patients (t1/2 approximately 4h). In both cell types, glutathione depletion (increased oxidative stress) caused a pronounced repair retardation even under non-toxic irradiation conditions. Furthermore, the cleavage activity at 8-oxoG residues measured in protein extracts of the cells dropped transiently after irradiation. An addition of dithiothreitol restored normal repair rates. Interestingly, the repair rates of cyclobutane pyrimidine dimers (t1/2 approximately 18 h), AP sites (t1/2 approximately 1h) and single-strand breaks (t1/2 <30 min) were not affected by the light-induced oxidative stress. We conclude that the base excision repair of oxidative purine modifications is surprisingly vulnerable to oxidative stress, while the nucleotide excision repair of pyrimidine dimers is not.  相似文献   
999.
The chromosomal translocation t(2;5)(p23;q35) is associated with "Anaplastic large cell lymphomas" (ALCL), a Non Hodgkin Lymphoma occurring in childhood. The fusion of the tyrosine kinase gene-ALK (anaplastic lymphoma kinase) on chromosome 2p23 to the NPM (nucleophosmin/B23) gene on chromosome 5q35 results in a 80 kDa chimeric protein, which activates the "survival" kinase PI3K. However, the binding mechanism between truncated ALK and PI3K is poorly understood. Therefore, we attempted to elucidate the molecular interaction between ALK and the regulatory p85 subunit of PI3K. Here we provide evidence that the truncated ALK homodimer binds to the SH3 domain of p85. This finding may be useful for the development of a new target-specific intervention.  相似文献   
1000.
Saccharomyces cerevisiae Dbr1 is a 405-amino acid RNA debranching enzyme that cleaves the 2′-5′ phosphodiester bonds of the lariat introns formed during pre-mRNA splicing. Debranching appears to be a rate-limiting step for the turnover of intronic RNA, insofar as the steady-state levels of lariat introns are greatly increased in a Δdbr1 strain. To gain insight to the requirements for yeast Dbr1 function, we performed a mutational analysis of 28 amino acids that are conserved in Dbr1 homologs from other organisms. We identified 13 residues (His13, Asp40, Arg45, Asp49, Tyr68, Tyr69, Asn85, His86, Glu87, His179, Asp180, His231 and His233) at which alanine substitutions resulted in lariat intron accumulation in vivo. Conservative replacements at these positions were introduced to illuminate structure–activity relationships. Residues important for Dbr1 function include putative counterparts of the amino acids that comprise the active site of the metallophosphoesterase superfamily, exemplified by the DNA phosphodiesterase Mre11. Using natural lariat RNAs and synthetic branched RNAs as substrates, we found that mutation of Asp40, Asn85, His86, His179, His231 or His233 to alanine abolishes or greatly diminishes debranching activity in vitro. Dbr1 sediments as a monomer and requires manganese as the metal cofactor for debranching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号