首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1077篇
  免费   69篇
  2023年   6篇
  2022年   14篇
  2021年   16篇
  2020年   6篇
  2019年   14篇
  2018年   11篇
  2017年   12篇
  2016年   19篇
  2015年   47篇
  2014年   54篇
  2013年   51篇
  2012年   85篇
  2011年   89篇
  2010年   47篇
  2009年   33篇
  2008年   63篇
  2007年   84篇
  2006年   63篇
  2005年   56篇
  2004年   43篇
  2003年   50篇
  2002年   59篇
  2001年   17篇
  2000年   12篇
  1999年   14篇
  1998年   24篇
  1997年   14篇
  1996年   14篇
  1995年   22篇
  1994年   11篇
  1993年   15篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   1篇
排序方式: 共有1146条查询结果,搜索用时 15 毫秒
921.
922.

Background

Gene expression studies related to cancer diagnosis and treatment are becoming more important. Housekeeping genes that are absolutely reliable are essential for these studies to normalize gene expression. An incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of regulation of GAPDH expression in human glioblastoma cells under hypoxic conditions in vitro in comparison to other housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches and (c) differences in GAPDH expression between low-grade astrocytomas and glioblastomas, for which modest and severe hypoxia, respectively, have been previously demonstrated. GAPDH and β-actin expression was comparatively examined in vivo in human low-grade astrocytoma and glioblastoma on both protein and mRNA level, by Western blot and semiquantitative RT-PCR, respectively. Furthermore, the same proteins were determined in vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1α protein regulation under hypoxia was also determined on mRNA level in vitro in GaMG and on protein level in U251, U373 and GaMG cells.

Results

We observed no hypoxia-induced regulatory effect on GAPDH expression in the three glioblastoma cell lines studied in vitro. In addition, GAPDH expression was similar in patient tumor samples of low-grade astrocytoma and glioblastoma, suggesting a lack of hypoxic regulation in vivo.

Conclusion

GAPDH represents an optimal choice of a housekeeping gene and/or loading control to determine the expression of hypoxia induced genes at least in glioblastoma. Because of the lack of GAPDH regulation under hypoxia, this gene is not an attractive target for tumor therapeutic approaches in human glioblastoma.  相似文献   
923.
Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance (G(Cl)) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral G(Cl) was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl(2) = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl(2) > tamoxifen > 4,4'-dinitro-2,2'-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of G(Cl) were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive G(Cl); 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive G(Cl); and 3) a forskolin-activated, linear G(Cl), which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl(-) secretion or support transcellular Cl(-) absorption.  相似文献   
924.
Upregulation of autophagy may have therapeutic benefit in a range of diseases that includes neurodegenerative conditions caused by intracytosolic aggregate-prone proteins, such as Huntington's disease, and certain infectious diseases, such as tuberculosis. The best-characterized drug that enhances autophagy is rapamycin, an inhibitor of the TOR (target of rapamycin) proteins, which are widely conserved from yeast to man. Unfortunately, the side effects of rapamycin, especially immunosuppression, preclude its use in treating certain diseases including tuberculosis, which accounts for approximately 2 million deaths worldwide each year, spurring interest in finding novel drugs that selectively enhance autophagy. We have recently reported a novel two-step screening process for the discovery of such compounds. We first identified compounds that enhance the growth-inhibitory effects of rapamycin in the budding yeast Saccharomyces cerevisiae, which we termed small molecule enhancers of rapamycin (SMERs). Next we showed that three SMERs induced autophagy independently, or downstream of mTOR, in mammalian cells, and furthermore enhanced the clearance of a mutant huntingtin fragment in Huntington's disease cell models. These SMERs also protected against mutant huntingtin fragment toxicity in Drosophila. We have subsequently tested two of the SMERs in models of tuberculosis and both enhance the killing of mycobacteria by primary human macrophages.  相似文献   
925.
926.
The motor protein Kif3a and primary cilia regulate important developmental processes, but their roles in skeletogenesis remain ill-defined. Here we created mice deficient in Kif3a in cartilage and focused on the cranial base and synchondroses. Kif3a deficiency caused cranial base growth retardation and dysmorphogenesis, which were evident in neonatal animals by anatomical and micro-computed tomography (microCT) inspection. Kif3a deficiency also changed synchondrosis growth plate organization and function, and the severity of these changes increased over time. By postnatal day (P)7, mutant growth plates lacked typical zones of chondrocyte proliferation and hypertrophy, and were instead composed of chondrocytes with an unusual phenotype characterized by strong collagen II (Col2a1) gene expression but barely detectable expression of Indian hedgehog (Ihh), collagen X (Col10a1), Vegf (Vegfa), MMP-13 (Mmp13) and osterix (Sp7). Concurrently, unexpected developmental events occurred in perichondrial tissues, including excessive intramembranous ossification all along the perichondrial border and the formation of ectopic cartilage masses. Looking for possible culprits for these latter processes, we analyzed hedgehog signalling topography and intensity by monitoring the expression of the hedgehog effectors Patched 1 and Gli1, and of the hedgehog-binding cell-surface component syndecan 3. Compared with controls, hedgehog signaling was quite feeble within mutant growth plates as early as P0, but was actually higher and was widespread all along mutant perichondrial tissues. Lastly, we studied postnatal mice deficient in Ihh in cartilage; their cranial base defects only minimally resembled those in Kif3a-deficient mice. In summary, Kif3a and primary cilia make unique contributions to cranial base development and synchondrosis growth plate function. Their deficiency causes abnormal topography of hedgehog signaling, growth plate dysfunction, and un-physiologic responses and processes in perichondrial tissues, including ectopic cartilage formation and excessive intramembranous ossification.  相似文献   
927.
The phytopathogenic basidiomycetous fungus Ustilago maydis secretes large amounts of the glycolipid biosurfactant ustilagic acid (UA). UA consists of 15,16-dihydroxypalmitic or 2,15,16-trihydroxypalmitic acid, which is O-glycosidically linked to cellobiose at its terminal hydroxyl group. In addition, the cellobiose moiety is acetylated and acylated with a short-chain hydroxy fatty acid. We have identified a 58 kb spanning gene cluster that contains 12 open reading frames coding for most, if not all, enzymes needed for UA biosynthesis. Using a combination of genetic and mass spectrometric analysis we were able to assign functional roles to three of the proteins encoded by the gene cluster. This allowed us to propose a biosynthesis route for UA. The Ahd1 protein belongs to the family of non-haem diiron reductases and is required for alpha-hydroxylation of palmitic acid. Two P450 monooxygenases, Cyp1 and Cyp2, catalyse terminal and subterminal hydroxylation of palmitic acid. We could demonstrate that infection of tomato leaves by the plant pathogenic fungus Botrytis cinerea is prevented by co-inoculation with wild-type U. maydis sporidia. U. maydis mutants defective in UA biosynthesis were unable to inhibit B. cinerea infection indicating that UA secretion is critical for antagonistic activity.  相似文献   
928.
Inhibitors of PDE5 are useful therapeutic agents for treatment of erectile dysfunction. A series of novel xanthine derivatives has been identified as potent inhibitors of PDE5, with good levels of selectivity against other PDE isoforms, including PDE6. Studies in the dog indicate excellent oral bioavailability for compound 21.  相似文献   
929.
RNA editing in plant organelles is an enigmatic process leading to conversion of cytidines into uridines. Editing specificity is determined by proteins; both those known so far are pentatricopeptide repeat (PPR) proteins. The enzyme catalysing RNA editing in plants is still totally unknown. We propose that the DYW domain found in many higher plant PPR proteins is the missing catalytic domain. This hypothesis is based on two compelling observations: (i) the DYW domain contains invariant residues that match the active site of cytidine deaminases; (ii) the phylogenetic distribution of the DYW domain is strictly correlated with RNA editing.  相似文献   
930.
High-throughput quantification of genetically coherent units (GCUs) is essential for deciphering population dynamics and species interactions within a community of microbes. Current techniques for microbial community analyses are, however, not suitable for this kind of high-throughput application. Here, we demonstrate the use of multivariate statistical analysis of complex DNA sequence electropherograms for the effective and accurate estimation of relative genotype abundance in cell samples from mixed microbial populations. The procedure is no more labor-intensive than standard automated DNA sequencing and provides a very effective means of quantitative data acquisition from experimental microbial communities. We present results with the Campylobacter jejuni strain-specific marker gene gltA, as well as the 16S rRNA gene, which is a universal marker across bacterial assemblages. The statistical models computed for these genes are applied to genetic data from two different experimental settings, namely, a chicken infection model and a multispecies anaerobic fermentation model, demonstrating collection of time series data from model bacterial communities. The method presented here is, however, applicable to any experimental scenario where the interest is quantification of GCUs in genetically heterogeneous DNA samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号