首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   53篇
  国内免费   2篇
  1135篇
  2022年   9篇
  2021年   22篇
  2020年   18篇
  2019年   16篇
  2018年   33篇
  2017年   27篇
  2016年   43篇
  2015年   56篇
  2014年   65篇
  2013年   70篇
  2012年   84篇
  2011年   111篇
  2010年   49篇
  2009年   42篇
  2008年   73篇
  2007年   78篇
  2006年   95篇
  2005年   43篇
  2004年   64篇
  2003年   57篇
  2002年   37篇
  2001年   3篇
  2000年   2篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1972年   1篇
排序方式: 共有1135条查询结果,搜索用时 15 毫秒
91.
In vivo protein kinases A and G (PKA and PKG) coordinately phosphorylate a broad range of substrates to mediate their various physiological effects. The functions of many of these substrates have yet to be defined genetically. Herein we show a role for smoothelin-like protein 1 (SMTNL1), a novel in vivo target of PKG/PKA, in mediating vascular adaptations to exercise. Aortas from smtnl1(-/-) mice exhibited strikingly enhanced vasorelaxation before exercise, similar in extent to that achieved after endurance training of wild-type littermates. Additionally, contractile responses to alpha-adrenergic agonists were greatly attenuated. Immunological studies showed SMTNL1 is expressed in smooth muscle and type 2a striated muscle fibers. Consistent with a role in adaptations to exercise, smtnl1(-/-) mice also exhibited increased type 2a fibers before training and better performance after forced endurance training compared smtnl1(+/+) mice. Furthermore, exercise was found to reduce expression of SMTNL1, particularly in female mice. In both muscle types, SMTNL1 is phosphorylated at Ser-301 in response to adrenergic signals. In vitro SMTNL1 suppresses myosin phosphatase activity through a substrate-directed effect, which is relieved by Ser-301 phosphorylation. Our findings suggest roles for SMTNL1 in cGMP/cAMP-mediated adaptations to exercise through mechanisms involving direct modulation of contractile activity.  相似文献   
92.
The relationship between alcohol consumption and glycoconjugate metabolism is complex and multidimensional. This review summarizes the advances in basic and clinical research on the molecular and cellular events involved in the metabolic effects of alcohol on glycoconjugates (glycoproteins, glycolipids, and proteoglycans). We summarize the action of ethanol, acetaldehyde, reactive oxygen species (ROS), nonoxidative metabolite of alcohol--fatty acid ethyl esters (FAEEs), and the ethanol-water competition mechanism, on glycoconjugate biosynthesis, modification, transport and secretion, as well as on elimination and catabolism processes. As the majority of changes in the cellular metabolism of glycoconjugates are generally ascribed to alterations in synthesis, transport, glycosylation and secretion, the degradation and elimination processes, of which the former occurs also in extracellular matrix, seem to be underappreciated. The pathomechanisms are additionally complicated by the fact that the effect of alcohol intoxication on the glycoconjugate metabolism depends not only on the duration of ethanol exposure, but also demonstrates dose- and regional-sensitivity. Further research is needed to bridge the gap in transdisciplinary research and enhance our understanding of alcohol- and glycoconjugate-related diseases.  相似文献   
93.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   
94.
The effects of O33 and O49 P. mirabilis lipopolysaccharides (LPSs) on human erythrocyte membrane properties were examined. Physical parameters of the plasma membrane, such as membrane lipid fluidity, physical state of membrane proteins, and osmotic fragility, were determined. The fluidity of the lipids was estimated using three spin-labeled stearic acids of doxyl derivatives: 5-doxylstearic acid, 12-doxylstearic acid, and 16-doxylstearic acid. All the applied labels locate to different depths of the lipid layer and provide information on the ordering of phospholipid fatty acyl chain mobility. LPSs O49 increased the membrane lipid fluidity in the polar region of the lipid bilayer as indicated by spin-labeled 5-doxylstearic acid. An increase in fluidity was also observed in the deeper region using 12-doxylstearic acid only for O33 LPSs. The highest concentration of O33 LPSs (1 mg/ml) increased the motion of membrane proteins detected by the spin-label residue of iodoacetamide. These results showed different actions of O33 and O49 LPSs on the plasma membrane due to the different chemical structures of O-polysaccharides. P. mirabilis O33 and O49 LPSs did not induce changes in the membrane cytoskeleton, osmotic fragility and lipid peroxidation of erythrocytes. On the other hand a rise in the content of carbonyl compounds was observed for the highest concentrations of O33 LPS. This result indicated protein oxidation in the erythrocyte membrane. Lipid A, the hydrophobic part of LPS, did not change the membrane lipid fluidity and osmotic fragility of erythrocytes. Smooth and rough forms of P. mirabilis LPSs were tested for their abilities for complement-mediated immunohemolysis of erythrocytes. Only one out of seven LPSs used was a potent agent of complement-mediated hemolysis. It was rough, Ra-type of P. mirabilis R110 LPS. The O-polysaccharide-dependent scheme of reaction is presented.  相似文献   
95.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   
96.
The effect of methyl jasmonate (JA-Me) on the floral bud formation and elongation growth in the short-day plant Pharbitis nil was investigated. The placing of 4-day-old seedlings of P. nil in a solution of JA-Me for a period of 24 h before an inductive (16 h or 14 h of darkness) night led to a dramatic reduction in the number of flower buds formed by the plant. Plants treated with JA-Me also totally lost their capacity to form a generative terminal bud. JA-Me applied after photoinduction does not inhibit flowering. Gibberellic acid (GA3) partly reverses the inhibitory effect of JA-Me. Plants treated simultaneously with JA-Me and GA3 formed about 3 flower buds more than plants treated with JA-Me only. JA-Me at a concentration of 10-7 M stimulates slightly, but at higher concentrations it inhibits root growth and shoot growth. A distinct lack of correlation between the effect of JA-Me on inhibition of flowering and shoot and root growth was noted. This indicates the independent action of JA-Me in controlling both processes.  相似文献   
97.
Hereditary nephrotic syndrome is caused by mutations in a number of different genes, the most common being NPHS2. The aim of the study was to identify the spectrum of NPHS2 mutations in Polish patients with the disease. A total of 141 children with steroid-resistant nephrotic syndrome (SRNS) were enrolled in the study. Mutational analysis included the entire coding sequence and intron boundaries of the NPHS2 gene. Restriction fragment length polymorphism (RFLP) and TaqMan genotyping assay were applied to detect selected NPHS2 sequence variants in 575 population-matched controls. Twenty patients (14 %) had homozygous or compound heterozygous NPHS2 mutations, the most frequent being c.1032delT found in 11 children and p.R138Q found in four patients. Carriers of the c.1032delT allele were exclusively found in the Pomeranian (Kashubian) region, suggesting a founder effect origin. The 14 % NPHS2 gene mutation detection rate is similar to that observed in other populations. The heterogeneity of mutations detected in the studied group confirms the requirement of genetic testing the entire NPHS2 coding sequence in Polish patients, with the exception of Kashubs, who should be initially screened for the c.1032delT deletion.  相似文献   
98.
99.
100.
The objective of this study was to determine whether nitric oxide (NO) is produced locally in the bovine corpus luteum (CL) and whether NO mediates prostaglandin F2alpha (PGF2alpha)-induced regression of the bovine CL in vivo. The local production of NO was determined in early I, early II, mid, late, and regressed stages of CL by determining NADPH-d activity and the presence of inducible and endothelial NO synthase immunolabeling. To determine whether inhibition of NO production counteracts the PGF2alpha-induced regression of the CL, saline (10 ml/h; n = 10) or a nonselective NOS inhibitor (Nomega-nitro-l-arginine methyl ester dihydrochloride [L-NAME]; 400 mg/h; n = 9) was infused for 2 h on Day 15 of the estrous cycle into the aorta abdominalis of Holstein/Polish Black and White heifers. After 30 min of infusion, saline or cloprostenol, an analogue of PGF2alpha (aPGF2alpha; 100 microg) was injected into the aorta abdominalis of animals infused with saline or L-NAME. NADPH-diaphorase activity was present in bovine CL, with the highest activity at mid and late luteal stages (P < 0.05). Inducible and endothelial NO synthases were observed with the strongest immunolabeling in the late CL (P < 0.05). Injection of aPGF2alpha increased nitrite/nitrate concentrations (P < 0.01) and inhibited P4 secretion (P < 0.05) in heifers that were infused with saline. Infusion of L-NAME stimulated P4 secretion (P < 0.05) and concomitantly inhibited plasma concentrations of nitrite/nitrate (P < 0.05). Concentrations of P4 in heifers infused with L-NAME and injected with aPGF2alpha were higher (P < 0.05) than in animals injected only with aPGF2alpha. The PGF2alpha analogue shortened the cycle length compared with that of saline (17.5 +/- 0.22 days vs. 21.5 +/- 0.65 days P < 0.05). L-NAME blocked the luteolytic action of the aPGF2alpha (22.6 +/- 1.07 days vs. 17.5 +/- 0.22 days, P < 0.05). These results suggest that NO is produced in the bovine CL. NO inhibits luteal steroidogenesis and it may be one of the components of an autocrine/paracrine luteolytic cascade induced by PGF2alpha.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号