首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   73篇
  2022年   4篇
  2021年   7篇
  2019年   7篇
  2018年   10篇
  2017年   5篇
  2016年   12篇
  2015年   6篇
  2014年   15篇
  2013年   15篇
  2012年   17篇
  2011年   21篇
  2010年   6篇
  2009年   6篇
  2008年   13篇
  2007年   16篇
  2006年   12篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   13篇
  2001年   7篇
  2000年   9篇
  1999年   10篇
  1998年   6篇
  1997年   15篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   6篇
  1988年   10篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1983年   8篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1973年   5篇
  1972年   5篇
  1971年   4篇
  1969年   6篇
  1968年   3篇
  1967年   3篇
  1966年   5篇
  1963年   3篇
  1960年   3篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
41.
Current status of antisense DNA methods in behavioral studies   总被引:4,自引:0,他引:4  
Ogawa  S; Pfaff  DW 《Chemical senses》1998,23(2):249-255
The antisense DNA method has been used successfully to block the expression of specific genes in vivo in neuronal systems. An increasing number of studies in the last few years have shown that antisense DNA administered directly into the brain can modify various kinds of behaviors. These findings strongly suggest that the antisense DNA method can be used as a powerful tool to study causal relationships between molecular processes in the brain and behavior. In this article we review the current status of the antisense method in behavioral studies and discuss its potentials and problems by focusing on the following four aspects; (i) optimal application paradigms of antisense DNA methods in behavioral studies; (ii) efficiencies of different administration methods of antisense DNA used in behavioral studies; (iii) determination of specificity of behavioral effects of antisense DNA; and (iv) discrepancies between antisense DNA effects on behaviors and those on protein levels of the targeted gene.   相似文献   
42.
43.
44.
Review of Florida Red Tide and Human Health Effects   总被引:1,自引:0,他引:1  
This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.  相似文献   
45.

Background

The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis.

Methodology/Principal Findings

There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression.

Conclusions/Significance

The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection.  相似文献   
46.
Secondary electrospray ionization mass spectrometry (SESI-MS) is a method developed for the rapid detection of volatile compounds, without the need for sample pretreatment. The method was first described by Fenn and colleagues1 and has been applied to the detection of illicit drugs2 and explosives3-4, the characterization of skin volatiles5, and the analysis of breath6-7.SESI ionization occurs by proton transfer reactions between the electrospray solution and the volatile analyte, and is therefore suitable for the analysis of hetero-organic molecules, just as in traditional electrospray ionization (ESI). However, unlike standard ESI, the proton transfer process of SESI occurs in the vapor phase rather than in solution (Fig. 1), and therefore SESI is best suited for detecting organic volatiles and aerosols.We are expanding the use of SESI-MS to the detection of bacterial volatiles as a method for bacterial identification and characterization8. We have demonstrated that SESI-MS volatile fingerprinting, combined with a statistical analysis method, can be used to differentiate bacterial genera, species, and mixed cultures in a variety of growth media.8 Here we provide the steps for obtaining bacterial volatile fingerprints using SESI-MS, including the instrumental parameters that should be optimized to ensure robust bacterial identification and characterization.  相似文献   
47.

Background

A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.

Results

Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.

Conclusions

Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.  相似文献   
48.
This article examines the role of computation and quantitative methods in modern biomedical research to identify emerging scientific, technical, policy and organizational trends. It identifies common concerns and practices in the emerging community of computationally-oriented bio-scientists by reviewing a national symposium, Digital Biology: the Emerging Paradigm, held at the National Institutes of Health in Bethesda, Maryland, November 6th and 7th 2003. This meeting showed how biomedical computing promises scientific breakthroughs that will yield significant health benefits. Three key areas that define the emerging discipline of digital biology are: scientific data integration, multi-scale modeling and networked science. Each area faces unique technical challenges and information policy issues that must be addressed as the field matures. Here we summarize the emergent challenges and offer suggestions to academia, industry and government on how best to expand the role of computation in their scientific activities.  相似文献   
49.
50.
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号