首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   78篇
  2018年   13篇
  2017年   3篇
  2016年   7篇
  2015年   9篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   12篇
  2010年   11篇
  2009年   3篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   15篇
  2004年   11篇
  2003年   11篇
  2002年   7篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   15篇
  1991年   12篇
  1990年   10篇
  1989年   11篇
  1988年   11篇
  1987年   9篇
  1986年   4篇
  1985年   9篇
  1984年   8篇
  1983年   6篇
  1982年   9篇
  1981年   5篇
  1979年   4篇
  1976年   7篇
  1974年   6篇
  1973年   4篇
  1972年   3篇
  1971年   6篇
  1970年   7篇
  1969年   4篇
  1968年   5篇
  1967年   8篇
  1966年   3篇
  1964年   3篇
排序方式: 共有419条查询结果,搜索用时 31 毫秒
101.
102.
Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803   总被引:4,自引:0,他引:4  
delta-Aminolevulinic acid is the universal precursor for all tetrapyrroles including hemes, chlorophylls, and bilins. In plants, algae, cyanobacteria, and many other bacteria, delta-aminolevulinic acid is synthesized from glutamate in a reaction sequence that requires three enzymes, ATP, NADPH, and tRNA(Glu). The three enzymes have been characterized as glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde aminotransferase. All three enzymes have been separated and partially characterized from plants and algae. In prokaryotic phototrophs, only the glutamyl-tRNA synthetase and glutamate-1-semialdehyde aminotransferase have been decribed. We report here the purification and some properties of the glutamyl-tRNA reductase from extracts of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. The glutamyl-tRNA reductase has been purified over 370-fold to apparent homogeneity. Its native molecular mass was determined to be 350 kDa by glycerol density gradient centrifugation, and its subunit size was estimated to be 39 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was determined for 42 residues. Much higher activity occurred with NADPH than with NADH as the reduced pyridine nucleotide substrate. Half-maximal rates occurred at 5 microM NADPH, whereas saturation was not reached even at 10 mM NADH. Purified Synechocystis glutamyl-tRNA reductase was inhibited 50% by 5 microM heme. Activity was unaffected by 10 microM 3-amino-2,3-dihydrobenzoic acid. No flavin, pyridine nucleotide, or other light-absorbing prosthetic group was detected on the purified enzyme. The catalytic turnover number of purified Synechocystis glutamyl-tRNA reductase is comparable to those of prokaryotic and plastidic glutamyl-tRNA synthetases.  相似文献   
103.
Cell-free extract of the unicellular rhodophyte, Cyanidium caldarium catalyzes enzymatic reduction of biliverdin IX alpha to phycocyanobilin, the chromophore of the light-harvesting phycobiliprotein, phycocyanin. The enzyme activity is soluble, and the required reductant is NADPH. The extract has been separated into three protein fractions, all of which are required to reconstitute biliverdin reduction. One fraction contains ferredoxin, which was identified by its absorption spectrum. This fraction could be replaced with commercial ferredoxin derived from spinach or the red alga, Porphyra umbilicalis. The second protein fraction contains ferredoxin-NADP+ reductase, which was identified by the ability to catalyze ferredoxin-dependent reduction of cytochrome c in the presence of NADPH. This fraction could be replaced with commercial spinach ferredoxin-NADP+ reductase. These two components appear to be identical to previously described components of the algal heme oxygenase system that catalyzes biliverdin IX alpha formation from protoheme in C. caldarium extracts. The third protein fraction, in the presence of the first two (or their commercial counterparts) plus NADPH, catalyzes the reduction of biliverdin IX alpha to phycocyanobilin. The results indicate that the transformation of biliverdin to phycocyanobilin catalyzed by C. caldarium extracts is a ferredoxin-linked reduction process. The results also suggest the possibility that heme oxygenation and biliverdin reduction may occur in C. caldarium on associated enzyme systems.  相似文献   
104.
A partially purified protein fraction from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to a violet colored bilin in the presence of NADPH, ferredoxin, and ferredoxin-NADP+ reductase. This bilin has a violin-like absorption spectrum with maxima at 335 and 560 nm in methanolic HCl and at 337, 567, and 603-604 nm in CHCl3. The bilin has been determined to be 15,16-dihydrobiliverdin IX alpha by comparative spectrophotometry and 1H NMR spectroscopy. This product of biliverdin IX alpha reduction is converted enzymatically to phycobilins by further reduction. A general biosynthetic pathway is proposed which accounts for the formation of the phycobilins from biliverdin IX alpha by a two-step reduction process followed by isomerization.  相似文献   
105.
106.
Microbial Hydroxylation of 1,4-Cineole   总被引:2,自引:1,他引:1       下载免费PDF全文
Microorganisms were examined for their potential to hydroxylate the oxygenated monoterpene 1,4-cineole. Using gas chromatography and thin-layer chromatography, screening experiments revealed that hydroxylation at position 2 was the most commonly observed microbial transformation reaction. In most microorganisms, the predominant alcohol metabolite was the 2-endo-alcohol isomer. Preparative-scale incubations were conducted in order to isolate and characterize microbial transformation products by comparison of proton nuclear magnetic resonance, mass spectrometry, and chromatography profiles with those of cineole standards. Streptomyces griseus yielded 8-hydroxy-1,4-cineole as the major hydroxylation product together with 2-exo- and 2-endo-hydroxy-1,4-cineoles.  相似文献   
107.
Extracts of the phycocyanin-containing unicellular red alga, Cyanidium caldarium, catalyzed enzymatic cleavage of the heme macrocycle to form the linear tetrapyrrole bilin structure. This is the key first step in the branch of the tetrapyrrole biosynthetic pathway leading to phycobilin photosynthetic accessory pigments. A mixed-function oxidase mechanism, similar to the biliverdin-forming reaction catalyzed by animal cell-derived microsomal heme oxygenase, was indicated by requirements for O2 and a reduced pyridine nucleotide. To avoid enzymatic conversion of the bilin product to phycocyanobilins and subsequent degradation during incubation, mesoheme IX was substituted for the normal physiological substrate, protoheme IX. Mesobiliverdin IX alpha was identified as the primary incubation product by comparative reverse-phase high-pressure liquid chromatography and absorption spectrophotometry. The enzymatic nature of the reaction was indicated by the requirement for cell extract, absence of activity in boiled cell extract, high specificity for NADPH as cosubstrate, formation of the physiologically relevant IX alpha bilin isomer, and over 75% inhibition by 1 microM Sn-protoporphyrin, which has been reported to be a competitive inhibitor of animal microsomal heme oxygenase. On the other hand, coupled oxidation of mesoheme, catalyzed by ascorbate plus pyridine or myoglobin, yielded a mixture of ring-opening mesobiliverdin IX isomers, was not inhibited by Sn-protoporphyrin, and could not use NADPH as the reductant. Unlike the animal microsomal heme oxygenase, the algal reaction appeared to be catalyzed by a soluble enzyme that was not sedimentable by centrifugation for 1 h at 200,000g. Although NADPH was the preferred reductant, small amounts of activity were obtained with NADH or ascorbate. A portion of the activity was retained after gel filtration of the cell extract to remove low-molecular-weight components. Considerable stimulation of activity, particularly in preparations that had been subjected to gel filtration, was obtained by addition of ascorbate to the incubation mixture containing NADPH. The results indicate that C. caldarium possesses a true heme oxygenase system, with properties somewhat different from that catalyzing heme degradation in animals. Taken together with previous results indicating that biliverdin is a precursor to phycocyanobilin, the results suggest that algal heme oxygenase is a component of the phycobilin biosynthetic pathway.  相似文献   
108.
1. The roles of conserved polar residues have been studied in 12 V-domains for which atomic coordinates are available. 2. In most cases a particular residue had a similar side chain conformation in all V-domains examined and the polar group provided the same hydrogen bonds which helped to stabilize the conformations of the domains. 3. In the case of a conserved glutamine/glutamic acid residue the buried side chain could adopt a variety of conformations and the polar group could form different hydrogen bonds from one domain to another. However, they contributed similarly to domain stability. 4. In the case of a conserved threonine/serine residue its side chain showed relative rotations of up to 180 degrees from one domain to another. The hydroxyl group could be buried or exposed at the domain surface. In some domains it formed hydrogen bonds to two other protein atoms but in other domains there was a single hydrogen bond or none at all. The varied roles of this residue are discussed in the text.  相似文献   
109.
We describe a chemiluminescent assay for E. coli beta-galactosidase using Lumi-Gal 530, a commercial formulation containing a stable phenylgalactose-substituted dioxetane as the substrate. Removal of the galactose moiety leads to the generation of an unstable dioxetane which decomposes to provide the observed chemiluminescence which is measured with a luminometer. Advantages of the assay are that it is simple, inexpensive and has 20-fold greater sensitivity than the standard spectrophotometric assay. Additional advantages are that the dioxetane is quite stable in the commercial formulation, and beta-galactosidase functions efficiently and is not degraded during the course of an assay. As luminometers are becoming commonplace in molecular biology laboratories, this assay provides a preferable alternative to the spectrophotometric assay.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号