首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   23篇
  378篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   12篇
  2014年   9篇
  2013年   8篇
  2012年   11篇
  2011年   19篇
  2010年   9篇
  2009年   10篇
  2008年   15篇
  2007年   12篇
  2006年   14篇
  2005年   20篇
  2004年   14篇
  2003年   13篇
  2002年   15篇
  2001年   11篇
  2000年   14篇
  1999年   10篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   9篇
  1994年   5篇
  1993年   6篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1971年   3篇
  1970年   2篇
  1969年   4篇
  1967年   2篇
  1963年   2篇
  1959年   2篇
  1955年   2篇
  1953年   3篇
  1918年   1篇
排序方式: 共有378条查询结果,搜索用时 0 毫秒
11.
The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.  相似文献   
12.
13.
Several dominantly inherited, late onset, neurodegenerative diseases are due to expansion of CAG repeats, leading to expansion of glutamine repeats in the affected proteins. These proteins are of very different sizes and, with one exception, show no sequence homology to known proteins or to each other; their functions are unknown. In some, the glutamine repeat starts near the N-terminus, in another near the middle and in another near the C-terminus, but regardless of these differences, no disease has been observed in individuals with fewer than 37 repeats, and absence of disease has never been found in those with more than 41 repeats. Protein constructs with more than 41 repeats are toxic to E. coli and to CHO cells in culture, and they elicit ataxia in transgenic mice. These observations argue in favour of a distinct change of structure associated with elongation beyond 37–41 glutamine repeats. The review describes experiments designed to find out what these structures might be and how they could influence the properties of the proteins of which they form part. Poly- -glutamines form pleated sheets of β-strands held together by hydrogen bonds between their amides. Incorporation of glutamine repeats into a small protein of known structure made it associate irreversibly into oligomers. That association took place during the folding of the protein molecules and led to their becoming firmly interlocked by either strand- or domain-swapping. Thermodynamic considerations suggest that elongation of glutamine repeats beyond a certain length may lead to a phase change from random coils to hydrogen-bonded hairpins. Possible mechanisms of expansion of CAG repeats are discussed in the light of looped DNA model structures.  相似文献   
14.
Mitochondria are particularly vulnerable to oxidative stress, and mitochondrial swelling and vacuolization are among the earliest pathologic features found in two strains of transgenic amyotrophic lateral sclerosis (ALS) mice with SOD1 mutations. Mice with the G93A human SOD1 mutation have altered electron transport enzymes, and expression of the mutant enzyme in vitro results in a loss of mitochondrial membrane potential and elevated cytosolic calcium concentration. Mitochondrial dysfunction may lead to ATP depletion, which may contribute to cell death. If this is true, then buffering intracellular energy levels could exert neuroprotective effects. Creatine kinase and its substrates creatine and phosphocreatine constitute an intricate cellular energy buffering and transport system connecting sites of energy production (mitochondria) with sites of energy consumption, and creatine administration stabilizes the mitochondrial creatine kinase and inhibits opening of the mitochondrial transition pore. We found that oral administration of creatine produced a dose-dependent improvement in motor performance and extended survival in G93A transgenic mice, and it protected mice from loss of both motor neurons and substantia nigra neurons at 120 days of age. Creatine administration protected G93A transgenic mice from increases in biochemical indices of oxidative damage. Therefore, creatine administration may be a new therapeutic strategy for ALS.  相似文献   
15.
Galanin is a recently isolated neuropeptide that is of particular interest in dementing disorders because of its known colocalization with choline acetyltransferase in magnocellular neurons of the basal nucleus of Meynert. These neurons degenerate in Alzheimer's disease, and there is a corresponding deficiency of cortical choline acetyltransferase activity. In the present study, galanin-like immunoreactivity was measured in the postmortem cerebral cortex and hippocampus of 10 controls and 14 patients who had had Alzheimer's disease. Significant reductions of choline acetyltransferase activity (50-60%) were found in all regions examined; however, there was no significant effect on concentrations of galanin-like immunoreactivity. Similar measurements were made in postmortem tissues of 12 control and 13 demented Parkinsonian patients who had had Alzheimer-type cortical pathology. Choline acetyltransferase activity was again significantly decreased in all regions examined but there were no significant reductions in galanin-like immunoreactivity. Experimental lesions of the fornix in rats produced parallel significantly correlated reductions of both choline acetyltransferase activity and galanin-like immunoreactivity in the hippocampus. Galanin-like immunoreactivity in the human hypothalamus consisted of two molecular-weight species on gel-permeation chromatography, and two forms were resolved by reverse-phase HPLC. The paradoxical preservation of galanin-like immunoreactivity, despite depletion of the activity of choline acetyltransferase, with which it is colocalized, is as yet unexplained. Recent studies have shown that galanin inhibits both acetylcholine release in the hippocampus and memory acquisition; therefore, preserved galanin may exacerbate the cholinergic and cognitive deficits that accompany dementia.  相似文献   
16.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   
17.
18.
The Mitochondrial Permeability Transition as a Target for Neuroprotection   总被引:4,自引:0,他引:4  
Mitochondria serve as checkpoints and amplifiers on cell death pathways. In the central nervous system, mitochondrial involvement seems essential for normal expression of cell death phenotypes, and interference with these pathways thus seems a reasonable approach to neuroprotection. We have been involved in examining the potential involvement of the mitochondrial permeability transition (mPT) as one of several possible mechanisms by which mitochondria may be drawn into these death cascades. This possibility, though still controversial, is supported by evidence that factors that may stimulate mPT induction are associated with some forms of cell death (e.g., in stroke) and are modulated by diseases of the central nervous system (e.g., Huntington's). Evidence of neuroprotection seen with compounds such as N-Met-Val cyclosporine also support this possibility.  相似文献   
19.
Oxidative damage, produced by mutant Cu/Zn superoxide dismutase (SOD1), may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating motor neuron degenerative disease. A novel approach to antioxidant therapy is the use of metalloporphyrins that catalytically scavenge a wide range of reactive oxygen and reactive nitrogen species. In this study, we examined the therapeutic potential of iron porphyrin (FeTCPP) in the G93A mutant SOD1 transgenic mouse model of ALS. We found that intraperitoneal injection of FeTCPP significantly improved motor function and extended survival in G93A mice. Similar results were seen with a second group of mice wherein treatment with FeTCPP was initiated at the onset of hindlimb weakness-roughly equivalent to the time at which treatment would begin in human patients. FeTCPP-treated mice also showed a significant reduction in levels of malondialdehyde (a marker of lipid peroxidation), in total content of protein carbonyls (a marker of protein oxidation), and increased neuronal survival in the spinal cord. These results therefore provide further evidence of oxidative damage in a mouse model of ALS, and suggest that FeTCPP could be beneficial for the treatment of ALS patients.  相似文献   
20.
Research into the pathogenesis of Parkinson's disease has been rapidly advanced by the development of animal models. Initial models were developed by using toxins that specifically targeted dopamine neurons, the most successful of which used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a toxin that causes parkinsonism in man. More recently, the identification of alpha-synuclein mutations as a rare cause of Parkinson's disease has led to the development of alpha-synuclein transgenic mice and Drosophila. Here, I discuss the merits and limitations of these different animal models in our attempts to understand the physiology of Parkinson's disease and to develop new therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号