首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   22篇
  359篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   11篇
  2015年   9篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   15篇
  2007年   11篇
  2006年   13篇
  2005年   18篇
  2004年   15篇
  2003年   14篇
  2002年   15篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   3篇
  1993年   3篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1983年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1971年   3篇
  1970年   2篇
  1969年   4篇
  1967年   2篇
  1963年   2篇
  1959年   2篇
  1955年   2篇
  1953年   3篇
排序方式: 共有359条查询结果,搜索用时 0 毫秒
11.
Ndfip1 is an adaptor for the E3 ubiquitin ligase Itch. Both Ndfip1- and Itch-deficient T cells are biased toward Th2 cytokine production. In this study, we demonstrate that lungs from Ndfip1(-/-) mice showed increased numbers of neutrophils and Th17 cells. This was not because Ndfip1(-/-) T cells are biased toward Th17 differentiation. In fact, fewer Ndfip1(-/-) T cells differentiated into Th17 cells in vitro due to high IL-4 production. Rather, Th17 differentiation was increased in Ndfip1(-/-) mice due to increased numbers of IL-6-producing eosinophils. IL-6 levels in mice that lacked both Ndfip1 and IL-4 were similar to wild-type controls, and these mice had fewer Th17 cells in their lungs. These results indicate that Th2 inflammation, such as that observed in Ndfip1(-/-) mice, can increase Th17 differentiation by recruiting IL-6-producing eosinophils into secondary lymphoid organs and tissues. This may explain why Th17 cells develop within an ongoing Th2 inflammatory response.  相似文献   
12.
As the ovule of Plantago ovata matures into a seed its epidermal cells are transformed from undifferentiated parenchyma to thin-walled containers of almost pure mucilage. During this process the volume of the cells increases 60–80 fold, and the protoplast degenerates to a remnant. Rapid cell expansion begins with pollination and is accompanied by an increase in the size of the nucleus and nucleolus, a change in the random arrangement of ribosomes, a decrease in the thickness of cell walls, and synthesis of starch. Deposition of mucilage inside vacuoles and between the plasma membrane and cell wall accompanies a marked increase in the number and size of Golgi vesicles. Histochemical evidence using the thiocarbohydrazide-osmium vapor method shows polysaccharide to be present within Golgi vesicles while they are still attached to the Golgi apparatus. Mucilage deposition is associated with further cell expansion, separation of the protoplast from the cell wall, fusion of vacuoles and extra protoplasmic space, and the disappearance of starch.  相似文献   
13.
14.
The rate of flow and electrolyte concentration of parotid saliva were measured before, during and after intravenous and contralateral intracarotid infusion of KCl (0.5 mol.1(-1)) and NaCl (0.5 mol.1(-1)) at 385-625 mumol. min(-1) for 40 min into 5 sheep. In intact conscious sheep contralateral intracarotid infusion of KCl caused marked depression of salivary secretion in all experiments whereas infusion of NaCl had no consistent effect on flow. Intravenous infusion of KCl into the intact conscious sheep caused a slight depression of salivary secretion but minimum flow was significantly higher than that during intracarotid infusion. When the sheep were anaesthetized salivary flow rates were low and contralateral intracarotid infusion of KCl either had no effect on flow or caused an increase in flow. After ipsilateral cervical sympathectomy contralateral intracarotid infusion of KCl into the conscious sheep caused a marked depression of salivary flow similar to that occurring when the sheep were intact. After section of the secretomotor nerve of the gland salivary flow rates were low and contralateral intracarotid infusion of KC1 had no effect on flow. The salivary flow responses of the sheep were consistent, regardless of whether the KCl infusions were given within 24 h or 1-2 weeks after cervical sympathectomy or secretomotor nerve section. Salivary sodium concentration was negatively correlated with salivary flow in all experiments. It was concluded that potassium acted at a site located in the head but by direct action on the salivary gland. The depression of salivary secretion by hyperkalaemia resulted from a decline in neural activity in the parasympathetic secretomotor innervation of the parotid gland.  相似文献   
15.
1. Pregnant, multiparous ewes were sacrificed at d 50 (n = 3), 80 (n = 4), 115 (n = 3), or 140 (n = 4) for biochemical, histological and autoradiographical quantitation of mammary growth. 2. Significant increases in concentration of mammary parenchyma DNA (0.25-24 mg/g tissue), total under DNA (57-1304 mg), and total under RNA (36-1504 mg) were observed by d 115. 3. Mammary tissue at d 115 contained the maximal percent of tissue volume occupied by epithelium (41.2%), number of cells per alveolar cross section (36.6) and percent of [methyl-3H]thymidine labeled epithelial cell nuclei (3.5%). 4. Concentration prolactin binding sites were significantly increased at d 115 of gestation, but serum prolactin and growth hormone concentrations remained low until d 140. 5. Mammary insulin binding sites (per unit membrane protein) progressively decreased during gestation. 6. Results suggest that serum growth hormone concentration and quantity of insulin receptors do not limit mammogenesis but greater concentrations of prolactin binding sites coincident with lobulo-alveolar formation, suggest a primary association with mammogenesis in the ewe.  相似文献   
16.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   
17.

Background  

Parkinson's disease (PD) is the second most common neurodegenerative disorder. As there is no definitive diagnostic test, its diagnosis is based on clinical criteria. Recently transcranial duplex scanning (TCD) of the substantia nigra in the brainstem has been proposed as an instrument to diagnose PD. We and others have found that TCD scanning of substantia nigra duplex is a relatively accurate diagnostic instrument in patients with parkinsonian symptoms. However, all studies on TCD so far have involved well-defined, later-stage PD patients, which will obviously lead to an overestimate of the diagnostic accuracy of TCD.  相似文献   
18.
The preparation of a novel acridine-based amino acid is reported. This N-Alloc-protected monomer can be coupled and deprotected under solid-phase peptide synthesis procedures to create acridine peptide conjugates as potential threading intercalators. A peptide containing this novel amino acid undergoes spectral changes in the presence of duplex DNA and RNA consistent with intercalative binding.  相似文献   
19.
Oxidative damage, produced by mutant Cu/Zn superoxide dismutase (SOD1), may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating motor neuron degenerative disease. A novel approach to antioxidant therapy is the use of metalloporphyrins that catalytically scavenge a wide range of reactive oxygen and reactive nitrogen species. In this study, we examined the therapeutic potential of iron porphyrin (FeTCPP) in the G93A mutant SOD1 transgenic mouse model of ALS. We found that intraperitoneal injection of FeTCPP significantly improved motor function and extended survival in G93A mice. Similar results were seen with a second group of mice wherein treatment with FeTCPP was initiated at the onset of hindlimb weakness-roughly equivalent to the time at which treatment would begin in human patients. FeTCPP-treated mice also showed a significant reduction in levels of malondialdehyde (a marker of lipid peroxidation), in total content of protein carbonyls (a marker of protein oxidation), and increased neuronal survival in the spinal cord. These results therefore provide further evidence of oxidative damage in a mouse model of ALS, and suggest that FeTCPP could be beneficial for the treatment of ALS patients.  相似文献   
20.
Coenzyme Q10 as a possible treatment for neurodegenerative diseases   总被引:1,自引:0,他引:1  
Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the electron transport gene as well as an important antioxidant, which is particularly effective within mitochondria. A number of prior studies have shown that it can exert efficacy in treating patients with known mitochondrial disorders. We investigated the potential usefulness of coenzyme Q 10 in animal models of Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). It has been demonstrated that CoQ 10 can protect against striatal lesions produced by the mitochondrial toxins malonate and 3-nitropropionic acid. These toxins have been utilized to model the striatal pathology, which occurs in HD. It also protects against 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice. CoQ 10 significantly extended survival in a transgenic mouse model of ALS. CoQ 10 can significantly extend survival, delay motor deficits and delay weight loss and attenuate the development of striatal atrophy in a transgenic mouse model of HD. In this mouse model, it showed additive efficacy when combined with the N -methyl- d -aspartate (NMDA) receptor antagonist, remacemide. CoQ 10 is presently being studied as a potential treatment for early PD as well as in combination with remacemide as a potential treatment for HD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号