首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   15篇
  国内免费   1篇
  2022年   8篇
  2020年   3篇
  2019年   8篇
  2018年   14篇
  2017年   7篇
  2016年   9篇
  2015年   8篇
  2014年   15篇
  2013年   25篇
  2012年   38篇
  2011年   27篇
  2010年   23篇
  2009年   14篇
  2008年   27篇
  2007年   20篇
  2006年   21篇
  2005年   18篇
  2004年   28篇
  2003年   18篇
  2002年   22篇
  2001年   12篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1995年   4篇
  1994年   5篇
  1992年   7篇
  1991年   3篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1973年   5篇
  1972年   6篇
  1971年   2篇
  1970年   4篇
  1969年   5篇
  1967年   2篇
  1966年   4篇
  1965年   2篇
  1964年   3篇
  1963年   2篇
排序方式: 共有511条查询结果,搜索用时 19 毫秒
61.
It was shown that the ability of sheep and horse haptoglobins differing in their immunological properties to inhibit PGH synthetase is about the same. It was found that haptoglobin inhibits the PGH synthetase-catalyzed enzymatic reaction, the inhibiting effect being non-competitive with respect to the electron donor, adrenaline. The degree of PGH synthetase inhibition by haptoglobin depends on the glycoprotein concentration, incubation time and enzyme activity.  相似文献   
62.
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.  相似文献   
63.
The work presents the data on the immunostimulating properties of neuropeptides. As revealed in this study, the leu-enkephalin level in blood sera (taken from 55 patients) inversely correlates with the intensity of the proliferative response of lymphocytes to phytohemagglutinin. In in vitro systems dalargin promotes the increase or decrease of the proliferative response of lymphocytes to phytohemagglutinin, depending on the proliferative activity of cells in response to this mitogen, and also leads to an increase in the number of rosette-forming cells. Leu-enkephalin in doses of 100, 10, 1, 0.1 micrograms/ml and dalargin in a dose of 0.1 microgram/ml inhibit the migration of leukocytes.  相似文献   
64.
Set‐shifting and maintenance are complex cognitive processes, which are often impaired in schizophrenia. The genetic basis of these processes is poorly understood. We aimed to investigate the association between genetic variants of the metabotropic glutamate receptor 3 (GRM3) and cognitive set‐shifting in healthy individuals. The relationship between 14 selected single nucleotide polymorphisms (SNPs) of the GRM3 gene and cognitive set‐shifting as measured by perseverative errors using the modified card sorting test (MCST) was analysed in a sample of N = 98 young healthy individuals (mean age in years: 22.7 ± 0.19). Results show that SNP rs17676277 is related to the performance on the MCST. Subjects with the TT genotype showed significantly less perseverative errors as compared with the AA (P = 0.025) and AT (P = 0.0005) and combined AA/AT genotypes (P = 0.0005). Haplotype analyses suggest the involvement of various SNPs of the GRM3 gene in perseverative error processing in a dominant model of inheritance. The findings strongly suggest that the genetic variation (rs17676277 and three haplotypes) in the metabotropic GRM3 is related to cognitive set‐shifting in healthy individuals independent of working memory. However, because of a relatively small sample size for a genetic association study, the present results are tentative and require replication.  相似文献   
65.
Wound healing is a complex sequence of cellular and molecular processes such as inflammation, cell migration, proliferation and differentiation. ROCK is a widely investigated Ser/Thr kinase with important roles in rearranging the actomyosin cytoskeleton. ROCK inhibitors have already been approved to improve corneal endothelial wound healing. The purpose of this study was to investigate the functions of myosin phosphatase (MP or PPP1CB), a type-1 phospho-Ser/Thr-specific protein phosphatase (PP1), one of the counter enzymes of ROCK, in skin homeostasis and wound healing. To confirm our hypotheses, we applied tautomycin (TM), a selective PP1 inhibitor, on murine skin that caused the arrest of wound closure. TM suppressed scratch closure of HaCaT human keratinocytes without having influence on the survival of the cells. Silencing of, the regulatory subunit of MP (MYPT1 or PPP1R12A), had a negative impact on the migration of keratinocytes and it influenced the cell-cell adhesion properties by decreasing the impedance of HaCaT cells. We assume that MP differentially activates migration and differentiation of keratinocytes and plays a key role in the downregulation of transglutaminase-1 in lower layers of skin where no differentiation is required. MAPK Proteome Profiler analysis on human ex vivo biopsies with MYPT1-silencing indicated that MP contributes to the mediation of wound healing by regulating the Akt signaling pathway. Our findings suggest that MP plays a role in the maintenance of normal homeostasis of skin and the process of wound healing.  相似文献   
66.
In the recent past, we demonstrated that a great deal is going on in the salivary glands of Drosophila in the interval after they release their glycoprotein‐rich secretory glue during pupariation. The early‐to‐mid prepupal salivary glands undergo extensive endocytosis with widespread vacuolation of the cytoplasm followed by massive apocrine secretion. Here, we describe additional novel properties of these endosomes. The use of vital pH‐sensitive probes provided confirmatory evidence that these endosomes have acidic contents and that there are two types of endocytosis seen in the prepupal glands. The salivary glands simultaneously generate mildly acidic, small, basally‐derived endosomes and strongly acidic, large and apical endosomes. Staining of the large vacuoles with vital acidic probes is possible only after there is ambipolar fusion of both basal and apical endosomes, since only basally‐derived endosomes can bring fluorescent probes into the vesicular system. We obtained multiple lines of evidence that the small basally‐derived endosomes are chiefly involved in the uptake of dietary Fe3+ iron. The fusion of basal endosomes with the larger and strongly acidic apical endosomes appears to facilitate optimal conditions for ferrireductase activity inside the vacuoles to release metabolic Fe2+ iron. While iron was not detectable directly due to limited staining sensitivity, we found increasing fluorescence of the glutathione‐sensitive probe CellTracker Blue CMAC in large vacuoles, which appeared to depend on the amount of iron released by ferrireductase. Moreover, heterologous fluorescently‐labeled mammalian iron‐bound transferrin is actively taken up, providing direct evidence for active iron uptake by basal endocytosis. In addition, we serendipitously found that small (basal) endosomes were uniquely recognized by PNA lectin, whereas large (apical) vacuoles bound DBA lectin.  相似文献   
67.
The part of the River Danube basin in the Western Balkans region (11 sampled localities and 57 in total with using of published data) revealed the remarkable diversity of brown trout assessed using the Control Region (CR) of mitochondrial DNA (mtDNA) as a molecular marker. The greatest number of brown trout populations holds brown trout of the Da1 haplotype. Particular distinct haplotypes are limited to isolated brown trout stocks. There are haplotypes of Danubian (Da), and those of Atlantic (At), Adriatic (Ad) and marmoratus (MA) lineages introduced there. Phylogenetic relationships inferred between them implicate the plesiomorhic character of Da*Vr, Da*D? and Da-s6 haplotypes that were resolved as ancestral clades, with the intermediate position between clades holding haplotypes of the non-Danubian lineage and more advanced haplotypes of the Danubian lineage. A uniform rate of evolution was found for all clades. The recent widespread distribution and exclusivity of Da1 haplotype imply its ancestral character among advanced Danubian haplotypes. Populations in the Sava, Drava, Una and Drina revealed an expansion, whereas those in the Kupa and Zapadna Morava catchments revealed both stability in size and great differentiation. Gene flow between stocks was found to be negligible.  相似文献   
68.
The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co‐ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt–villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε‐deficient enterocyte populations, with the exception of Lgr5+ ISCs, which exhibit Dvl2‐dependent Wnt signaling attenuation. CKIδ/ε‐depleted gut organoids cease proliferating and die rapidly, yet survive and resume self‐renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine.  相似文献   
69.
WASP-homology 2 (WH2) domains, which were first identified in the WASP/Scar (suppressor of cAMP receptor)/WAVE (WASP-family verprolin homologous protein) family of proteins, are multifunctional regulators of actin assembly. Two recently discovered actin-binding proteins, Spire and Cordon-bleu (Cobl), which have roles in axis patterning in developmental processes, use repeats of WH2 domains to generate a large repertoire of novel regulatory activities, including G-actin sequestration, actin-filament nucleation, filament severing and barbed-end dynamics regulation. We describe how these multiple functions selectively operate in a cellular context to control the dynamics of the actin cytoskeleton. In vivo, Spire and Cobl can synergize with other actin regulators. As an example, we outline potential methods to gain insight into the functional basis for reported genetic interactions among Spire, profilin and formin.  相似文献   
70.
dUTP pyrophosphatase, a preventive DNA repair enzyme, contributes to maintain the appropriate cellular dUTP/dTTP ratio by catalyzing dUTP hydrolysis. dUTPase is essential for viability in bacteria and eukaryotes alike. Identification of species-specific antagonists of bacterial dUTPases is expected to contribute to the development of novel antimicrobial agents. As a first general step, design of dUTPase inhibitors should be based on modifications of the substrate dUTP phosphate chain, as modifications in either base or sugar moieties strongly impair ligand binding. Based on structural differences between bacterial and human dUTPases, derivatization of dUTP-analogous compounds will be required as a second step to invoke species-specific character. Studies performed with dUTP analogues also offer insights into substrate binding characteristics of this important and structurally peculiar enzyme. In this study, alpha,beta-methylene-dUDP was synthesized and its complex with dUTPase was characterized. Enzymatic phosphorylation of this substrate analogue by pyruvate kinase was not possible in contrast to the successful enzymatic phosphorylation of alpha,beta-imino-dUDP. One explanation for this finding is that the different bond angles and the presence of the methylene group may preclude formation of a catalytically competent complex with the kinase. Crystal structure of E. coli dUTPase:alpha,beta-methylene-dUDP and E. coli dUTPase:dUDP:Mn complexes were determined and analyzed in comparison with previous data. Results show that the "trans" alpha-phosphate conformation of alpha,beta-methylene-dUDP differs from the catalytically competent "gauche" alpha-phosphate conformation of the imino analogue and the oxo substrate, manifested in the shifted position of the alpha-phosphorus by more than 3 A. The three-dimensional structures determined in this work show that the binding of the methylene analogue with the alpha-phosphorus in the "gauche" conformation would result in steric clash of the methylene group with the protein atoms. In addition, the metal ion cofactor was not bound in the crystal of the complex with the methylene analogue while it was clearly visible as coordinated to dUDP, arguing that the altered phosphate chain conformation also perturbs metal ion complexation. Isothermal calorimetry titrations indicate that the binding affinity of alpha,beta-methylene-dUDP toward dUTPase is drastically decreased when compared with that of dUDP. In conclusion, the present data suggest that while alpha,beta-methylene-dUDP seems to be practically nonhydrolyzable, it is not a strong binding inhibitor of dUTPase probably due to the altered binding mode of the phosphate chain. Results indicate that in some cases methylene analogues may not faithfully reflect the competent substrate ligand properties, especially if the methylene hydrogens are in steric conflict with the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号