首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   4篇
  1998年   2篇
  1993年   1篇
  1985年   1篇
  1977年   2篇
  1971年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.

Background  

The fingerprint of a molecule is a bitstring based on its structure, constructed such that structurally similar molecules will have similar fingerprints. Molecular fingerprints can be used in an initial phase of drug development for identifying novel drug candidates by screening large databases for molecules with fingerprints similar to a query fingerprint.  相似文献   
12.

Background  

The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n 3) algorithm upon which all existing implementations are based.  相似文献   
13.
The surface antigen 1-related sequence 2 of Neospora caninum (NcSRS2) is considered as an immunodominant antigen. In this study, the gene encoding truncated NcSRS2 (NcSRS2t) lacking an N-terminal signal peptide and C-terminal hydrophobic regions was expressed in Escherichia coli, and its diagnostic potential in an enzyme-linked immunosorbent assay (ELISA) was evaluated. ELISA could discriminate clearly between known N. caninum-positive and -negative sera from cattle. Field serum samples collected from cattle in Brazil were examined for the diagnosis of N. caninum infection using ELISA. Of the 197 samples analyzed, 64 (32.5%) samples were positive for antibodies to N. caninum. Of the 64 ELISA-positive samples, 58 (90.6%) were confirmed as positive by Western blot analysis with whole-parasite antigens. These results suggest that ELISA with recombinant NcSRS2t is an effective method for diagnosis of N. caninum infection in cattle.  相似文献   
14.
Song  Ruiqi  Zhai  Xuejie  Fan  Xinli  Li  Yongchang  Huercha  Ge  Ting  Li  Caishan  Li  Min  He  Wenwen  Zheng  Huizhen  Gan  Lu  Zhang  Yang  Chahan  Bayin 《Experimental & applied acarology》2022,86(2):283-298

Hyalomma asiaticum and H. anatolicum are tick species in Eurasia and Africa with major medical and veterinary significance. Beside their direct pathogenic effects, H. asiaticum and H. anatolicum are vectors of important diseases of livestock and in some instances of zoonoses. In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Cathepsin L-like cysteine protease (CPL) is a potent hemoglobinase, and plays important roles in the digestion of blood acquired from a host. CPL from H. anatolicum (HanCPL) with high similarity (>?90%) for H. asiaticum CPL (HasCPL) were aligned by in silico analysis. After further in vitro validation, the anti-HasCPL sera have cross-reactivity between the different total native protein of life stages and tissues for H. asiaticum and H. anatolicum. Furthermore, we further confirmed that recombinant HasCPL (rHasCPL) immunized rabbits were partially cross-protected (54.8%) by H. anatolicum infestation.

  相似文献   
15.
Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineage-tracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery.  相似文献   
16.
17.

Background  

Coalescent simulations are playing a large role in interpreting large scale intra-specific sequence or polymorphism surveys and for planning and evaluating association studies. Coalescent simulations of data sets under different models can be compared to the actual data to test the importance of different evolutionary factors and thus get insight into these.  相似文献   
18.
19.
Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.  相似文献   
20.

Background

Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003.

Results

We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods.

Conclusions

We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state, or whether the observed changes represent a new genetic equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号