首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   20篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有48条查询结果,搜索用时 265 毫秒
41.
Cultures of Achlya sp., Phytophthora cinnamomi, Saprolegnia diclina, S. ferax, and S. parasitica, treated with 6-carboxyfluorescein diacetate solution, accumulate 6-carboxyfluorescein in a reticulate system of fine tubules. The network shows longitudinal polarity within the hyphae, tubules being finest toward the hyphal tips. In more mature subapical regions the network is connected with large vacuoles that also accumulate 6-carboxyfluorescein. A morphologically similar system has also been identified in freeze-substituted hyphae of S. ferax. The network is considered to be vacuolar, but differs from the tubular vacuole system of true fungi in that tubules are less motile, more frequently branched, and do not alternate with clusters of spherical vacuoles. The appearance of the network resembles patterns of calcium-sensitive dye staining and it is suggested that the vacuolar reticulum in the tip region of oomycete hyphae may act as a Ca2+ sink. The tubular reticulum in oomycetes is very fragile and can be shown with 6-carboxyfluorescein in only those hyphal tips with a motility and organelle distribution characteristic of growing hyphae with normal morphology. Diverse abnormal hyphae show a range of other fluorochrome localizations. These include large irregular compartments filled with fluorochrome, and fluorescent cytoplasm with organelles and vacuoles standing out in negative contrast. These localizations in abnormal hyphae are correlated with other structural changes indicative of damage. Special care is required in experiments with oomycetes to avoid such artefacts of localization. Copyright 1997 Academic Press. Copyright 1997 Academic Press  相似文献   
42.
Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus, which is virulent for susceptible animals, infects cells via four members of the alpha(V) subclass of cellular integrins. In contrast, tissue culture adaptation of some FMDV serotypes results in the loss of viral virulence in the animal, accompanied by the loss of virus' ability to use integrins as receptors. These avirulent viral variants acquire positively charged amino acids on surface-exposed structural proteins, resulting in the utilization of cell surface heparan sulfate (HS) molecules as receptors. We have recently shown that FMDV serotypes utilizing integrin receptors enter cells via a clathrin-mediated mechanism into early endosomes. Acidification within the endosome results in a breakdown of the viral capsid, releasing the RNA, which enters the cytoplasm by a still undefined mechanism. Since there is evidence that HS internalizes bound ligands via a caveola-mediated mechanism, it was of interest to analyze the entry of FMDV by cell-surface HS. Using a genetically engineered variant of type O(1)Campos (O(1)C3056R) which can utilize both integrins and HS as receptors and a second variant (O(1)C3056R-KGE) which can utilize only HS as a receptor, we followed viral entry using confocal microscopy. After virus bound to cells at 4 degrees C, followed by a temperature shift to 37 degrees C, type O(1)C3056R-KGE colocalized with caveolin-1, while O(1)C3056R colocalized with both clathrin and caveolin-1. Compounds which either disrupt or inhibit the formation of lipid rafts inhibited the replication of O(1)C3056R-KGE. Furthermore, a caveolin-1 knockdown by RNA interference also considerably reduced the efficiency of O(1)C3056R-KGE infection. These results indicate that HS-binding FMDV enters the cells via the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. In addition, these results further suggest that the route of FMDV entry into cells is a function solely of the viral receptor.  相似文献   
43.
It has been demonstrated that foot-and-mouth disease virus (FMDV) can utilize at least four members of the alpha(V) subgroup of the integrin family of receptors in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid amino acid sequence motif located within the betaG-betaH loop of VP1. While there have been extensive studies of virus-receptor interactions at the cell surface, our understanding of the events during viral entry into the infected cell is still not clear. We have utilized confocal microscopy to analyze the entry of two FMDV serotypes (types A and O) after interaction with integrin receptors at the cell surface. In cell cultures expressing both the alphaVbeta3 and alphaVbeta6 integrins, virus adsorbed to the cells at 4 degrees C appears to colocalize almost exclusively with the alphaVbeta6 integrin. Upon shifting the infected cells to 37 degrees C, FMDV capsid proteins were detected within 15 min after the temperature shift, in association with the integrin in vesicular structures that were positive for a marker of clathrin-mediated endocytosis. In contrast, virus did not colocalize with a marker for caveola-mediated endocytosis. Virus remained associated with the integrin until about 1 h after the temperature shift, when viral proteins appeared around the perinuclear region of the cell. By 15 min after the temperature shift, viral proteins were seen colocalizing with a marker for early endosomes, while no colocalization with late endosomal markers was observed. In the presence of monensin, which raises the pH of endocytic vesicles and has been shown to inhibit FMDV replication, viral proteins were not released from the recycling endosome structures. Viral proteins were not observed associated with the endoplasmic reticulum or the Golgi. These data indicate that FMDV utilizes the clathrin-mediated endocytosis pathway to infect the cells and that viral replication begins due to acidification of endocytic vesicles, causing the breakdown of the viral capsid structure and release of the genome by an as-yet-unidentified mechanism.  相似文献   
44.
Neff S  Baxt B 《Journal of virology》2001,75(1):527-532
The integrin alpha(v)beta(3) has been shown to function as one of the integrin receptors on cultured cells for foot-and-mouth disease virus (FMDV), and high-efficiency utilization of the bovine homolog of this integrin is dependent on the cysteine-rich repeat region of the bovine beta(3) subunit. In this study we have examined the role of the cytoplasmic domains of the alpha(v) and beta(3) subunits in FMDV infection. We have found that truncations or extensions of these domains of either subunit, including deletions removing almost all of the cytoplasmic domains, had little or no effect on the ability of the integrin to function as a receptor for FMDV. The lysosomotropic agent monensin inhibited viral replication in cells transfected with either intact or cytoplasmic domain-truncated alpha(v)beta(3). In addition, viral replication in transfected cells was inhibited by an alpha(v)beta(3) function-blocking antibody but not by function-blocking antibodies to three other RGD-directed integrins, suggesting that these integrins are not involved in the infectious process. These results indicate that alterations to the cytoplasmic domains of either subunit, which lead to the inability of the integrin receptor to function normally, do not abolish the ability of the integrin to bind and internalize this viral ligand.  相似文献   
45.
The hydantoin transporter Mhp1 is a sodium‐coupled secondary active transport protein of the nucleobase‐cation‐symport family and a member of the widespread 5‐helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site‐directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5‐substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5‐substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5‐(2‐naphthylmethyl)‐L‐hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1.  相似文献   
46.
Duque H  Baxt B 《Journal of virology》2003,77(4):2500-2511
Three members of the alpha(V) integrin family of cellular receptors, alpha(V)beta(1), alpha(V)beta(3), and alpha(V)beta(6), have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid (RGD) amino acid sequence motif located within the betaG-betaH (G-H) loop of VP1. Other alpha(V) integrins, as well as several other integrins, recognize and bind to RGD motifs on their natural ligands and also may be candidate receptors for FMDV. To analyze the roles of the alpha(V) integrins from a susceptible species as viral receptors, we molecularly cloned the bovine beta(1), beta(5), and beta(6) integrin subunits. Using these subunits, along with previously cloned bovine alpha(V) and beta(3) subunits, in a transient expression assay system, we compared the efficiencies of infection mediated by alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(5), and alpha(V)beta(6) among three strains of FMDV serotype A and two strains of serotype O. While all the viruses could infect cells expressing these integrins, they exhibited different efficiencies of integrin utilization. All the type A viruses used alpha(V)beta(3) and alpha(V)beta(6) with relatively high efficiency, while only one virus utilized alpha(V)beta(1) with moderate efficiency. In contrast, both type O viruses utilized alpha(V)beta(6) and alpha(V)beta(1) with higher efficiency than alpha(V)beta(3). Only low levels of viral replication were detected in alpha(V)beta(5)-expressing cells infected with either serotype. Experiments in which the ligand-binding domains among the beta subunits were exchanged indicated that this region of the integrin subunit appears to contribute to the differences in integrin utilizations among strains. In contrast, the G-H loops of the different viruses do not appear to be involved in this phenomenon. Thus, the ability of the virus to utilize multiple integrins in vitro may be a reflection of the use of multiple receptors during the course of infection within the susceptible host.  相似文献   
47.
48.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号