首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   46篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   4篇
  2018年   18篇
  2017年   6篇
  2016年   11篇
  2015年   17篇
  2014年   18篇
  2013年   26篇
  2012年   31篇
  2011年   31篇
  2010年   14篇
  2009年   24篇
  2008年   33篇
  2007年   21篇
  2006年   19篇
  2005年   15篇
  2004年   21篇
  2003年   19篇
  2002年   20篇
  2001年   13篇
  2000年   18篇
  1999年   20篇
  1998年   11篇
  1997年   9篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1986年   8篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1976年   2篇
  1974年   6篇
  1973年   2篇
  1966年   2篇
  1942年   2篇
  1936年   2篇
排序方式: 共有562条查询结果,搜索用时 31 毫秒
81.
A novel computational approach, termed Search for Modified Peptides (SeMoP), for the unrestricted discovery and verification of peptide modifications in shotgun proteomic experiments using low resolution ion trap MS/MS spectra is presented. Various peptide modifications, including post-translational modifications, sequence polymorphisms, as well as sample handling-induced changes, can be identified using this approach. SeMoP utilizes a three-step strategy: (1) a standard database search to identify proteins in a sample; (2) an unrestricted search for modifications using a newly developed algorithm; and (3) a second standard database search targeted to specific modifications found using the unrestricted search. This targeted approach provides verification of discovered modifications and, due to increased sensitivity, a general increase in the number of peptides with the specific modification. The feasibility of the overall strategy has been first demonstrated in the analysis of 65 plasma proteins. Various sample handling induced modifications, such as beta-elimination of disulfide bridges and pyrocarbamidomethylation, as well as biologically induced modifications, such as phosphorylation and methylation, have been detected. A subsequent targeted Sequest search has been used to verify selected modifications, and a 4-fold increase in the number of modified peptides was obtained. In a second application, 1367 proteins of a cervical cancer cell line were processed, leading to detection of several novel amino acid substitutions. By conducting the search against a database of peptides derived from proteins with decoy sequences, a false discovery rate of less than 5% for the unrestricted search resulted. SeMoP is shown to be an effective and easily implemented approach for the discovery and verification of peptide modifications.  相似文献   
82.
83.

Background  

Occludin is a tetraspanin protein normally localized to tight junctions. The protein interacts with a variety of pathogens including viruses and bacteria, an interaction that sometimes leads to its extrajunctional localization.  相似文献   
84.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   
85.
Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.  相似文献   
86.
87.
In light of their adverse impacts on resident microbial communities, it is widely predicted that broad-spectrum antibiotics can promote the spread of resistance by releasing resistant strains from competition with other strains and species. We investigated the competitive suppression of a resistant strain of Escherichia coli inoculated into human-associated communities in the presence and absence of the broad and narrow spectrum antibiotics rifampicin and polymyxin B, respectively. We found strong evidence of community-level suppression of the resistant strain in the absence of antibiotics and, despite large changes in community composition and abundance following rifampicin exposure, suppression of the invading resistant strain was maintained in both antibiotic treatments. Instead, the strength of competitive suppression was more strongly associated with the source community (stool sample from individual human donor). This suggests microbiome composition strongly influences the competitive suppression of antibiotic-resistant strains, but at least some antibiotic-associated disruption can be tolerated before competitive release is observed. A deeper understanding of this association will aid the development of ecologically-aware strategies for managing antibiotic resistance.Subject terms: Microbial ecology, Community ecology, Antibiotics

The overuse of broad-spectrum antibiotics in clinical and agricultural settings is a key driver of the current antibiotic resistance crisis [1]. Research into antibiotic resistance has traditionally focused on the evolution of resistance in individual pathogens [2]. In the last decade, researchers have turned their attention to the collateral damage inflicted on commensal members of the microbiome, such as those belonging to the dense communities of the human gastrointestinal tract [3, 4]. Several studies have shown that antibiotics can leave gut communities vulnerable to colonisation by other pathogens [57], and, most recently, resistance evolution in invading strains can be facilitated by the absence of community suppression [8, 9]. Taken together, these two lines of enquiry appear to bear out conventional wisdom that relative to narrow-spectrum antibiotics or antibiotic-free conditions, broad spectrum antibiotics should increase the likelihood of communities being invaded by resistant strains [10, 11]. On the other hand, given evidence that community-level properties can sometimes be robust to changes in taxonomic composition [12], it is possible that some antibiotic-associated disruption can be tolerated before colonization resistance is affected. Despite the importance of these contrasting predictions, there have been few, if any, direct tests in human-associated microbiota.We investigated the effect of broad and narrow spectrum antibiotics on the strength of competitive suppression on a resistant variant (generated by in vitro selection for resistance mutations) of a focal strain (Escherichia coli K-12 MG1655) inoculated into gut microbiome communities collected from human faecal samples. The focal strain was jointly resistant to the broad-spectrum antibiotic rifampicin (targets Gram-positives and Gram-negatives via inhibition of the highly conserved bacterial RNA polymerase) and the narrow spectrum antibiotic polymyxin B (only targets Gram-negatives). The focal strain was inoculated alongside live or sterile slurry produced using a sample from one of three healthy human donors (described in [9]) into customized gut media without antibiotics or supplemented with 128 μg/ml rifampicin or 4 μg/ml polymyxin B (see Fig S1). Following 24 h incubation under anaerobic conditions, focal strain density and total biomass were measured via colony counting and flow cytometry, and community composition and diversity were analysed via 16S rRNA sequencing.In the absence of either antibiotic, focal strain density after 24 h was significantly lower in the presence of the three donor communities, indicative of strong competitive suppression (Fig. 1a). Surprisingly, we detected similarly strong competitive suppression in both the antibiotic treatments as we did in the antibiotic-free treatment. Instead, we found that focal strain performance was a stronger function of the specific donor community, irrespective of antibiotic treatment (Figs. 1b, and S2).Open in a separate windowFig. 1Effect of community, donor and antibiotic on focal strain abundance.a Violin plots showing the distribution of observed abundances of the focal strain in each antibiotic treatment. Blue denotes community free treatments; yellow denotes community treatment. Point shape denotes the individual human donor of live community or sterilized slurry: donor 1 = circles, donor 2 = squares, donor 3 = diamonds. b Treatment contrasts (posterior distributions of parameter estimates for a linear model with negative binomial errors) for focal strain abundance as a function of community (live vs sterile slurry), antibiotic (none, polymixin B or rifampicin), and donor (slurry prepared with samples from human donor 1, 2 or 3), and the interactions between community and antibiotic, and community and donor. Posterior parameter estimates in green have 95% credible intervals that do not overlap with 0 (i.e., there is less than 5% probability there is no effect of the variables/interactions captured by these coefficients). The reference level (vertical black line) = donor 1 in the no antibiotic treatment in the absence of the community (i.e., sterilized slurry).What makes these results particularly striking is that, consistent with previous studies [7, 10, 13], treatment with a broad-spectrum antibiotic was still associated with a marked shift in community composition (analysis of 16S amplicon data) (Fig. 2a). Based on OTU composition, all three donors in the rifampicin treatment cluster separately from the polymyxin B and antibiotic-free treatments, which cluster together (Fig. 2b). This divergence in composition appears to be largely driven by enrichment of both Enterobacteriaceae and Erysipelotrichaceae in the rifampicin treatment (Fig. 2a). In addition to strong shifts in composition, total bacterial abundance was significantly reduced in the rifampicin treatment (Figs. 2c and S3). Despite this, total richness and diversity (Shannon Index) after 24 h did not differ between the treatments (Fig. 2c). In contrast, diversity loss over time was more strongly associated with donor identity, with the donor community associated with the weakest competitive suppression (donor 3) also exhibiting the largest decline in richness and diversity across all treatments. This observation is consistent with previous work demonstrating that colonization resistance in the mouse gut is highly contingent on the complexity and composition of the resident microbiota [14].Open in a separate windowFig. 2Community response to antibiotic treatments.a Heatmap of relative abundance of the ten most abundant families of bacteria across treatments (derived from amplicon data). I = inoculum; AB free = Antibiotic free; Poly = polymyxin B; Rif = rifampicin. b NMDS ordination of family level composition in each treatment-donor combination. c Violin plots showing the abundance (top), species richness (middle) and diversity (Shannon Index) (bottom) distributions in each treatment. In b and c: circles = donor 1; squares = donor 2, diamonds = donor 3.A limitation of this study is that we only considered the effects of two antibiotics. Nevertheless, given the scale of community perturbation observed (Fig. 2), we can at least be sure our findings are not explained by a lack of antibiotic effects in our system. There must be some limit dictated by antibiotic concentration, combination, or duration of exposure, beyond which we would expect to observe stronger competitive release. Indeed, prior research has shown that antibiotics can greatly inhibit colonisation resistance [15, 16]. As such, characterizing where this limit lies (e.g., by investigating community-mediated suppression as a function of antibiotic concentration/duration) will be an important challenge for future work. Similarly, although we only considered a single focal strain, and other strains/species may have been more invasive (for example, those with fewer, different or less costly resistance mutations), key for our experiment was that the focal strain had a positive growth rate over the timescale of the experiment, despite exhibiting significant resistance costs in antibiotic-free assays (Fig. S1). This allowed us to test for sensitivity of competitive suppression to antibiotic treatment. We also note that in spite of a small boost in the focal strain’s performance in the presence of rifampicin independent of the community (a possible hormetic response [17] absent under aerobic growth in LB, Fig S1), we did not observe an increase in the magnitude of competitive release in the rifampicin treatment. Finally, the drop in diversity indicates, unsurprisingly, microcosms are a novel environment relative to the source environment. Despite this, key taxa in each community were stable over the course of the experiment, and previously over a longer timescale in the same set-up [9], demonstrating these conditions sustain diverse human-associated communities over relevant timescales.In conclusion, these results are consistent with prevailing wisdom that healthy gut communities can suppress invading strains and thereby reduce the likelihood of resistance emerging [8, 9, 18]. Nevertheless, the absence of a significant effect of broad, or even narrow, spectrum antibiotics on the degree of competitive suppression of our focal strain is much more surprising. Despite the limitations of scope discussed above, this shows that the functional diversity of gut communities may be more robust to disturbance by broad spectrum antibiotics than previously recognised. This is not to suggest that the use of broad-spectrum antibiotics does not drive marked changes in composition but rather that there is some degree of functional redundancy in diverse communities that facilitates the maintenance of competitive suppression [12, 19]. Notwithstanding the need to test how these findings translate to in vivo settings, this finding is relevant for optimizing personalised treatments that either account for disruption by antibiotics or that make microbiomes harder for pathogens to invade.  相似文献   
88.
Australoheros is represented by species of Cichlidae spread over different Brazilian river systems. Individuals of Australoheros angiru were collected in isolated lagoons at 950 m of altitude in a dividing plateau between the basins of the Iguassu River and the Uruguay River, located in the São Lourenço do Oeste region (Santa Catarina State), and subject to basic and molecular cytogenetic analyzes. Moreover, a review about the occurrence and collections sites of A. angiru was used to the clarification of biogeographical issues of Australoheros and other species of fish that are common between the basins of the Uruguay River and Iguassu River. The analysis by conventional staining with Giemsa found a diploid number of 48 chromosomes (18 submetacentric + 30 subtelocentric/acrocentric) for males and females, without sex chromosome differentiation. The nucleolar organizing regions identified by silver impregnation and by fluorescence in situ hybridization with 18S rDNA probes showed to be simple, located on the end of the short arm of subtelocentric chromosome pair 15. Heterochromatin was observed in the centromeric region of most of the chromosomes of the complement, in addition to coincide with the nucleolar organizing regions. The data presented in this study are the first reports on the location of sites of 5S rDNA for Australoheros, being located in interstitial position on the long arm of subtelocentric chromosome pair 11. The basic and molecular cytogenetic data presented here contribute to the better understanding of chromosomal evolution of Cichlidae, act as interesting tools for taxonomy and phylogeny of the group, in addition to help in understanding the dispersion of A. angiru between the two hydrographic basins.  相似文献   
89.
The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell''s dissemination capabilities.  相似文献   
90.
EEF2K (eukaryotic elongation factor-2 kinase), also known as Ca2+/calmodulin-dependent protein kinase III, functions in downregulating peptide chain elongation through inactivation of EEF2 (eukaryotic translation elongation factor 2). Currently, there is a limited amount of information on the promotion of autophagic survival by EEF2K in breast and glioblastoma cell lines. However, the precise role of EEF2K in carcinogenesis as well as the underlying mechanism involved is still poorly understood. In this study, contrary to the reported autophagy-promoting activity of EEF2K in certain cancer cells, EEF2K is shown to negatively regulate autophagy in human colon cancer cells as indicated by the increase of LC3-II levels, the accumulation of LC3 dots per cell, and the promotion of autophagic flux in EEF2K knockdown cells. EEF2K negatively regulates cell viability, clonogenicity, cell proliferation, and cell size in colon cancer cells. Autophagy induced by EEF2K silencing promotes cell survival and does not potentiate the anticancer efficacy of the AKT inhibitor MK-2206. In addition, autophagy induced by silencing of EEF2K is attributed to induction of protein synthesis and activation of the AMPK-ULK1 pathway, independent of the suppression of MTOR activity and ROS generation. Knockdown of AMPK or ULK1 significantly abrogates EEF2K silencing-induced increase of LC3-II levels, accumulation of LC3 dots per cell as well as cell proliferation in colon cancer cells. In conclusion, silencing of EEF2K promotes autophagic survival via activation of the AMPK-ULK1 pathway in colon cancer cells. This finding suggests that upregulation of EEF2K activity may constitute a novel approach for the treatment of human colon cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号