首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   45篇
  2022年   2篇
  2021年   5篇
  2019年   3篇
  2018年   3篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   12篇
  2011年   16篇
  2010年   9篇
  2009年   5篇
  2008年   16篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   20篇
  2003年   13篇
  2002年   12篇
  2001年   13篇
  2000年   22篇
  1999年   19篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1992年   21篇
  1991年   12篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1955年   1篇
  1952年   1篇
  1951年   1篇
  1948年   1篇
排序方式: 共有344条查询结果,搜索用时 0 毫秒
11.
Regularly arrayed surface (glyco)proteins—often referred to as S layers—are a common feature of the cell envelopes of almost all archaebacteria. We have selected some examples (Halobacterium, Sulfolobus, Thermoproteus, Pyrobaculum, Staphylothermus), and we describe the structure of their surface layers as revealed primarily by electron crystallography. In spite of a considerable diversity in shapes and dimensions, some common structural features emerge from the comparison. The glycoprotein arrays are composed of oligomeric units which are anchored in the plasma membrane; extended spacer or linker domains maintain the bulk of the more or less porous surface layers at a constant distance above the membrane surface, thus creating a quasi-periplasmic compartment. Functions ascribed to surface layers, such as compartmentalization, shape maintenance and determination, and adhesion are discussed.  相似文献   
12.
The aim of the present study was to investigate the spatial distribution of Ca and P in dentin and enamel of developing first (M1) and second (M2) maxillary hamster molars (age: 3-5 days) in comparison with cultured molars. For culturing the germs were dissected from 3-day-old hamsters and incubated for 1 and 2 days, respectively, in a modified BGJb medium. Electron probe X-ray measurements were carried out on 3 regions extending in a vertical axis from cusp tip over cusp middle to cusp base next to the cervical loop region. Neither the in vivo nor the in vitro group was statistically different in the Ca and P concentration in the regions of dentin. In both groups the measurements in enamel showed a gradient with an increase in Ca and P from enamel surface towards dentin-enamel junction and a gradient with an increase from cusp base towards cusp tip. Direct comparison of the in vivo group with the in vitro group did not demonstrate a statistical difference between the mineral content of the 4-day-old germs and the 1-day culture germs, respectively the 5-day-old germs and the 2-day culture germs. The results indicate a high correspondence between the mineralization process of in vitro and in vivo tooth germ development.  相似文献   
13.
Limited proteolysis experiments were performed with outer membranes from Comamonas acidovorans to probe the topology of its major protein component, the anion-selective porin Omp32. Proteinase K treatment above a critical temperature of 42 degrees C cleaved the surface-exposed regions of the porin, yielding membrane-embedded fragments which were separated by SDS polyacrylamide gel electrophoresis or reversed phase chromatography. The identification of the proteinase K-sensitive sites was performed by microsequencing. This allowed us to determine six surface-exposed sites of the porin, all located in nonconserved primary structure regions. These results along with the previously determined amino acid sequence and in conjunction with some structural constraints applicable to porins allowed us to propose a chain-folding model of the Omp32 porin. The features of our model are compared with the structure of the Rhodobacter capsulatus porin, recently established by X-ray crystallography (Weiss et al., 1991) and they are used to elucidate the structural basis of the anion selectivity.  相似文献   
14.
Structural deteriorations in biomembranes, as inevitably induced while structural information is gathered by electron optical methods, were evaluated by infrared spectroscopy. Tripalmitin model membranes were irradiated with 100 keV-electrons in an electron microscope. The intensity decay of group vibrations over the dose reveals the sequence of damage in the polar and nonpolar part of the molecule. The C-C backbone, being the most important structural feature, shows a significant latency effect up to 0.6 e-/A2 and is completely disordered by 3 e-/A2, corresponding to about three inelastic processes per molecule.  相似文献   
15.
16.
Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPRmt) to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPRmt, and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS–induced UPRmt. Activation of the UPRmt, but not of other stress-signaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS–induced UPRmt, suggesting that surveillance-activated defenses specifically inhibit the UPRmt but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD), and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.  相似文献   
17.
In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein.  相似文献   
18.
19.
20.
The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号