首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3219篇
  免费   356篇
  国内免费   1篇
  2021年   43篇
  2019年   37篇
  2018年   30篇
  2017年   42篇
  2016年   65篇
  2015年   100篇
  2014年   136篇
  2013年   169篇
  2012年   185篇
  2011年   178篇
  2010年   105篇
  2009年   82篇
  2008年   132篇
  2007年   153篇
  2006年   130篇
  2005年   131篇
  2004年   120篇
  2003年   107篇
  2002年   100篇
  2001年   94篇
  2000年   106篇
  1999年   86篇
  1998年   59篇
  1997年   42篇
  1996年   40篇
  1995年   25篇
  1994年   31篇
  1993年   25篇
  1992年   53篇
  1991年   46篇
  1990年   39篇
  1989年   45篇
  1988年   54篇
  1987年   43篇
  1986年   43篇
  1985年   57篇
  1984年   31篇
  1982年   24篇
  1981年   23篇
  1980年   22篇
  1979年   38篇
  1978年   27篇
  1977年   43篇
  1976年   33篇
  1975年   22篇
  1974年   35篇
  1973年   38篇
  1972年   32篇
  1971年   21篇
  1970年   26篇
排序方式: 共有3576条查询结果,搜索用时 46 毫秒
991.
Nonintegrated, circular DNA molecules of Herpesvirus saimiri and Herpesvirus ateles were found in five lymphoid cell lines originating from tumor tissues or established by in vitro immortalization of T lymphocytes. The arrangement of unique (L) and repetitive (H) DNA sequences in circular viral genomes was analyzed by partial denaturation mapping followed by visualization with an electron microscope. Three types of circular viral DNA structures were found. (i) The virus-producing cell line RLC, which is derived from an H. ateles-induced rabbit lymphoma, contains circular viral genomes which consist of a single L-DNA and a single H-DNA region, both the same length as in virion DNA. (ii) The circular viral genomes of the nonproducer cell lines H1591 and A1601, in vitro transformed by H. saimiri and H. ateles, respectively, have deletions in the unique L-DNA region and larger H-DNA regions. Cell line A1601 lacks about 8% of virion L-DNA, and H1591 cells lack about 40% of viral L-DNA information. (iii) The nonproducing H. saimiri tumor cell lines 1670 and 70N2 harbor viral genomes with two L-DNA and two H-DNA regions, respectively. Both types of circular molecules have a long and a short L-segment. The sequence arrangements of circular DNA molecules from H. saimiri-transformed cell lines were compared with those of linear virion DNA by computer alignment of partial denaturation histograms. The L-DNA deletion in cell line H1591 was found to map in the right half of the virion DNA. Comparison of the denaturation patterns of both L regions of cell lines 1670 and 70N2 identified the short L regions as subsets of the long L regions. Thus, circular viral DNA molecules of all four nonproducer cell lines represent defective genomes.  相似文献   
992.
A Kurtz  W Jelkmann  C Bauer 《FEBS letters》1982,149(1):105-108
The effect of pure human insulin-like growth factor I (IGF I) on the colony formation of late stage erythroid precursor cells (CFU-e) from fetal mouse liver and adult bone marrow was studied in a serum-free culture system. We found that IGF I in physiological concentrations stimulated erythroid colony formation. The combined effect of IGF I and erythropoietin was smaller than the sum of their single effects. The number of colonies induced by IGF I was linearly dependent on the number of plated cells. Our results indicate that IGF I is the first clearly defined mitogen that stimulates the late stages of erythroid differentiation independently of erythropoietin.  相似文献   
993.
994.
The four identical recognition sites for the restriction endonuclease PstI in purified plasmid pSM1 DNA I are cleaved at markedly different rates. The order and relative frequencies of cleavage at these four PstI sites have been determined from the order of appearance of partial cleavage products and from an analysis of production of specific unit length linear molecules. The same pattern of preferential cleavage is also found when linear, nicked circular, or relaxed closed circular forms of the same plasmid DNa are used as substrates for PstI. Inspection of the nucleotide sequences immediately adjoining each of the PstI sites suggests that the presence of adjacent runs of G-C base pairs confers significant resistance to cleavage.  相似文献   
995.
Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P < 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1–14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10–50 μM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy. J. Cell. Biochem. 71:491–501, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
996.
Risk factors for type 2 diabetes mellitus (T2DM) consist of a combination of an unhealthy, imbalanced diet and genetic factors that may interact with each other. Single nucleotide polymorphism (SNP) in the prospero homeobox 1 (PROX1) gene is a strong genetic susceptibility factor for this metabolic disorder and impaired β-cell function. As the role of this gene in T2DM development remains unclear, novel approaches are needed to advance the understanding of the mechanisms of T2DM development. Therefore, in this study, for the first time, postprandial changes in plasma metabolites were analysed by GC–MS in nondiabetic men with different PROX1 genotypes up to 5 years prior to prediabetes appearance. Eighteen contestants (12 with high risk (HR) and 6 with low risk (LR) genotype) participated in high-carbohydrate (HC) and normo-carbohydrate (NC) meal-challenge tests. Our study concluded that both meal-challenge tests provoked changes in 15 plasma metabolites (amino acids, carbohydrates, fatty acids and others) in HR, but not LR genotype carriers. Postprandial changes in the levels of some of the detected metabolites may be a source of potential specific early disturbances possibly associated with the future development of T2DM. Thus, accurate determination of these metabolites can be important for the early diagnosis of this metabolic disease.  相似文献   
997.
998.
Mildly oxidized low density lipoprotein (mox-LDL) is critically involved in the early atherogenic responses of the endothelium and increases endothelial permeability through an unknown signal pathway. Here we show that (i) exposure of confluent human endothelial cells (HUVEC) to mox-LDL but not to native LDL induces the formation of actin stress fibers and intercellular gaps within minutes, leading to an increase in endothelial permeability; (ii) mox-LDL induces a transient decrease in myosin light chain (MLC) phosphatase that is paralleled by an increase in MLC phosphorylation; (iii) phosphorylated MLC stimulated by mox-LDL is incorporated into stress fibers; (iv) cytoskeletal rearrangements and MLC phosphorylation are inhibited by C3 transferase from Clostridium botulinum, a specific Rho inhibitor, and Y-27632, an inhibitor of Rho kinase; and (v) mox-LDL does not increase intracellular Ca(2+) concentration. Our data indicate that mox-LDL induces endothelial cell contraction through activation of Rho and its effector Rho kinase which inhibits MLC phosphatase and phosphorylates MLC. We suggest that inhibition of this novel cell signaling pathway of mox-LDL could be relevant for the prevention of atherosclerosis.  相似文献   
999.
Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation.   总被引:5,自引:0,他引:5  
Ornithine decarboxylase (ODC) is the initial enzyme in the polyamine synthetic pathway, and polyamines are required for cell proliferation. We have shown previously that nitric oxide (NO) inhibits ODC activity in Caco-2 cells and in crude cell lysate preparations. In this study we examined the mechanism by which NO inhibits the activity of purified ODC. NO, in the form of S-nitrosocysteine (CysNO), S-nitrosoglutathione (GSNO), or 1, 1-diethyl-2-hydroxy-2-nitroso-hydrazine (DEA/NO), inhibited enzyme activity in a concentration-dependent manner. CysNO (1 microM) inhibited ODC activity by approximately 90% and 3 microM GSNO by more than 70%. DEA/NO was less potent, inhibiting enzyme activity by 70% at a concentration of 30 microM. Inhibition of enzyme activity by CysNO, GSNO, or DEA/NO was reversible by addition of dithiothreitol or glutathione. Cuprous ion (Cu (I)) also reversed the inhibitory effect of these NO donor agents. The data presented here support the hypothesis that NO inhibits ODC activity via S-nitrosylation of a critical cysteine residue(s) on ODC.  相似文献   
1000.
W P Lu  Y Sun  M D Bauer  S Paule  P M Koenigs  W G Kraft 《Biochemistry》1999,38(20):6537-6546
Penicillin-binding protein 2a (PBP2a) is the primary beta-lactam resistance determinant of methicillin-resistant Staphylococcus aureus (MRSA). MecA, the gene coding for PBP2a, was cloned with the membrane-anchoring region at the N-terminus deleted. The truncated protein (PBP2a) was overexpressed in Escherichia coli mostly in the soluble form accounting for approximately 25% of soluble cell protein and was purified to homogeneity. The purified protein was shown to covalently bind beta-lactams in an 1:1 ratio as determined by electrospray mass spectrometry. A novel method based on HPLC-elctrospray mass spectrometry has been developed to quantitatively determine the formation of the covalent adducts or acyl-PBP2a complexes. By using this method, combined with kinetic techniques including quench flow, we have extensively characterized the interactions between PBP2a and three beta-lactams and determined related kinetic parameters for the first time. The apparent first-order rate constants (ka) of PBP2a acylation by benzylpenicillin showed a hyperbolic dependence on the concentration of benzylpenicillin. This is consistent with the mechanism that the binding of the penicillin to PBP2a consists of reversible formation of a Michaelis complex followed by formation of the penicilloyl-PBP2a adduct, and allowed the determination of the individual kinetic parameters for these two steps, the dissociation constant Kd of 13.3 mM and the first-order rate constant k2 of 0.22 s-1. From these values, the second-order rate constant k2/Kd, the value reflecting the overall binding efficiency of a beta-lactam, of 16.5 M-1 s-1 was obtained. The fairly high Kd value indicates that benzylpenicillin fits rather poorly into the protein active site. Similar studies on the interaction between PBP2a and methicillin revealed k2 of 0.0083 s-1 and Kd of 16.9 mM, resulting in an even smaller k2/Kd value of 0.49 M-1 s-1. The rate constants k3 for deacylation of the acyl-PBP2a complexes, the third step in the interactions, were measured to be <1.5 x 10(-)5 s-1. These results indicate that the resistance of PBP2a to penicillin inactivation is mainly due to the extremely low penicillin acylating rate in addition to the low association affinity, but not to a fast rate of deacylation. Acylation of PBP2a by a high-affinity cephalosporin, Compound 1, also followed a saturation curve of ka versus the compound concentration, from which k2 = 0.39 s-1, Kd = 0.22 mM, and k2/Kd = 1750 M-1 s-1 were obtained. The 100-fold increase in the k2/Kd value as compared with that of benzylpenicillin is mostly attributable to the decreased (60-fold) Kd, indicating that the cephalosporin fits much better to the binding pocket of the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号