首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   9篇
  国内免费   5篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   18篇
  2020年   4篇
  2019年   15篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   12篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1976年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
101.
We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.  相似文献   
102.
Ubp3/Bre5 complex is a substrate-specific deubiquitylating enzyme which mediates deubiquitylation of Sec23, a component of the COPII complex involved in the transport between endoplasmic reticulum and Golgi apparatus [1]. Here we show that ubiquitylation of Sec23 is controlled by the Rsp5 ubiquitin ligase both in vivo and in vitro. We have recently identified Cdc48, a chaperone-like that plays a key role in the proteasomal escort pathway, as a partner of the Ubp3/Bre5 complex [2]. We now found that cdc48 thermosensitive mutant cells not only accumulate ubiquitylated form of Sec23 but also display a stabilization of this protein at the restrictive temperature. This indicates that Cdc48 controls the proteasome-mediated degradation of Sec23. Our data favor the idea that Cdc48 plays a key role in deciphering fates of ubiquitylated Sec23 to degradation or deubiquitylation/stabilization via its cofactors.  相似文献   
103.
This study examined the influence of three inoculant strains of Bradyrhizobium japonicum (Thal-8, Tal 620, Dulawala) on the ability of chickpea (Cicer arietinum (L.) to adapt to drought-stress. Strain Thal-8 was most effective in the root-nodule symbiosis and also partially alleviated decreased growth and yield imposed by drought stress. Strain Thal-8, in pure culture, also produced higher amounts of gibberellic acid (GA) and indole-3-acetic acid (IAA) and lower amounts of abscisic acid (ABA) than the other two test strains. Thal-8 increased the root biomass, GA and IAA contents of leaves of chickpea plants, including ICC 4948NN, a non-nodulating line. These results are consistent with the hypothesis that GA and IAA is produced by the Thal-8 strain and/or elevates levels of these phytohormones in chickpeas. This contributes to its high performance as a nitrogen-fixing microsymbiont. The growth-promoting response evoked by different strains of Bradyrhizobium correlated with higher ratios of GA and IAA relative to ABA phytohormones in the plants.  相似文献   
104.
The underlying pathophysiology of nonhealing chronic wounds is poorly understood due to the changes occurring at the gene level and the complexity arising in their proteomic profile. Here, we elucidated the temporal and differential profile of the normal and diabetic wound-healing mediators along with their interactions and associated pathways. Skin tissues corresponding to normal and diabetic wounds were isolated at Days 0, 3, 6, and 9 representing different healing phases. Temporal gene expression was analyzed by quantitative real-time PCR. Concurrently, differential protein patterns in the wound tissues were identified by Nano LC-ESI-TOF mass spectrometry and later confirmed by Western blot analysis. Gene ontology annotation, protein-protein interaction, and protein pathway analysis were performed using DAVID, PANTHER, and STRING bioinformatics resources. Uniquely identified proteins (complement C3, amyloid beta precursor protein, and cytoplasmic linker associated protein 2) in the diabetic wound tissue implied that these proteins are involved in the pathogenesis of diabetic wound. They exhibit enhanced catalytic activity, trigger pathways linked with inflammation, and negatively regulate wound healing. However, in the normal wound tissue, axin 1, chondroitin sulfate proteoglycan 4, and sphingosine-1-phosphate receptor were identified, which are involved in proliferation, angiogenesis, and remodeling. Our findings demonstrate the correlation between elevated gene expression of tumor necrosis factor-α, interleukin (IL)-1β, and identified mediators: aryl hydrocarbon receptor nuclear translocator, 5′-aminolevulinate synthase 2, and CXC-family, that inflicted an inflammatory response by activating downstream MAPK, JAK-STAT, and NF-κB pathways. Similarly, in normal wound tissue, the upregulated IL-4 and hepatocyte growth factor levels in conjunction with the identified proteins, serine/threonine-protein kinase mTOR and peroxisome proliferator-activated receptor gamma, played a significant role in the cellular response to platelet-derived growth factor stimulus, dermal epithelialization, and cell proliferation, processes associated with the repair mechanism. Furthermore, Western blot analysis indicated elevated levels of inflammatory markers and reduced levels of proliferative and angiogenic factors in the diabetic wound.  相似文献   
105.
Applied Microbiology and Biotechnology - The formation of inclusion bodies (IBs) is considered as an Achilles heel of heterologous protein expression in bacterial hosts. Wide array of techniques...  相似文献   
106.
The question whether intrinsic bioelectromagnetism exists within DNA or not is an important and so far unexplored area of biology. We carried out a study of isolated genetic material, utilizing both prokaryotic and eukaryotic DNA, to measure any possible intrinsic electromagnetic effects or fields emanated within the molecules. Studies were carried out with extremely sensitive ultra-low-noise trans-impedance amplifiers and a high-precision data acquisition system to record any possible faintest electromagnetic signals from the concentrated, as well as diluted DNA, in vitro. Some experiments were performed to investigate any possible electromagnetic effects of high-frequency (HF) RF fields on the DNA under test. However, after extensive testing and careful measurements, we failed to detect any possible intrinsic or induced electromagnetic activity from the DNA as compared to simple water or empty chambers. We reached a conclusion that there does not seem to be any measurable intrinsic electromagnetic activity or fields present in the DNA material, whether in concentrated or diluted form, and if there were, any such activity or fields would be extremely minuscule to be detected with scientific precision by current human measurement methods.  相似文献   
107.
108.
109.
We recently introduced a screening technology termed ligand-guided selection, (LIGS), to selectively identify target-specific aptamers from an evolved cell-SELEX library. Cell-SELEX utilizes a large combinatorial single-stranded oligonucleotide library and progressively selects DNA ligands against whole cells with variable DNA-binding affinities and specificities by repeated rounds of partition and amplification. LIGS exploits the partition step and introduces a secondary, pre-existing high-affinity monoclonal antibody (mAb) ligand to outcompete and elute specific aptamers towards the binding target of the antibody, not the cell. Here, using anti-CD3ε mAb against the cluster of differentiation 3 (CD3ε), as the guiding ligand against one of the domains of the T-cell Receptor (TCR) complex expressed on Jurkat.E6 cells, we discovered three specific aptamers against TCR complex expressed on an immortalized line of human T lymphocyte cells. In sum, we demonstrate that specific aptamers can be identified utilizing an antibody against a single domain of a multidomain protein complex in their endogenous state with neither post- nor pre-SELEX protein manipulation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号