首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1159篇
  免费   67篇
  2023年   10篇
  2022年   12篇
  2021年   37篇
  2020年   26篇
  2019年   29篇
  2018年   31篇
  2017年   30篇
  2016年   50篇
  2015年   57篇
  2014年   64篇
  2013年   76篇
  2012年   112篇
  2011年   86篇
  2010年   64篇
  2009年   58篇
  2008年   65篇
  2007年   72篇
  2006年   51篇
  2005年   56篇
  2004年   45篇
  2003年   34篇
  2002年   38篇
  2001年   15篇
  2000年   9篇
  1999年   13篇
  1998年   8篇
  1997年   11篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   7篇
  1990年   6篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1977年   6篇
  1976年   4篇
  1975年   1篇
  1974年   6篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1966年   3篇
  1965年   1篇
  1962年   1篇
排序方式: 共有1226条查询结果,搜索用时 640 毫秒
41.
Phytochemistry Reviews - Cynara cardunculus health benefits have aroused much interest, leading to the discovery of valuable bioactive compounds with a crucial role in plant defence. Guaianolides...  相似文献   
42.
Purinergic Signalling - Genetic variants involved in adenosine metabolism and its receptors were associated with increased risk for psychiatric disorders, including anxiety, depression, and...  相似文献   
43.
The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi‐arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi‐arid Mediterranean pine forests in Spain over 1950–2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long‐term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low‐frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non‐stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non‐stationary effects of ENSO can be propagated from tropical areas to semi‐arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea–air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long‐term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought‐prone forests and review the expected impacts of global warming on the profiled mechanisms.  相似文献   
44.
45.
β‐Adrenergic signaling regulates many physiological processes in skeletal muscles. A wealth of evidence has shown that β‐agonists can increase skeletal muscle mass in vertebrates. Nevertheless, to date, the specific role of β‐adrenergic receptors in different cell phenotypes (myoblasts, fibroblasts, and myotubes) and during the different steps of embryonic skeletal muscle differentiation has not been studied. Therefore, here we address this question through the analysis of embryonic chick primary cultures of skeletal muscle cells during the formation of multinucleated myotubes. We used isoproterenol (ISO), a β‐adrenergic receptor agonist, to activate the β‐adrenergic signaling and quantified several aspects of muscle differentiation. ISO induced an increase in myoblast proliferation, in the percentage of Pax7‐positive myoblasts and in the size of skeletal muscle fibers, suggesting that ISO activates a hyperplasic and hypertrophic muscle response. Interestingly, treatment with ISO did not alter the number of fibroblast cells, suggesting that ISO effects are specific to muscle cells in the case of chick myogenic cell culture. We also show that rapamycin, an inhibitor of the mammalian target of rapamycin signaling pathway, did not prevent the effects of ISO on chick muscle fiber size. The collection of these results provides new insights into the role of β‐adrenergic signaling during skeletal muscle proliferation and differentiation and specifically in the regulation of skeletal muscle hyperplasia and hypertrophy.  相似文献   
46.
We introduce a simple new approach for time‐resolved multiplexed analysis of complex systems using near‐infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user‐friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time‐gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely‐available software, has the advantage of time‐resolved NIR imaging, including better tissue penetration and background‐free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image‐guided surgery or optical tomography.   相似文献   
47.
Morphogenesis control by chemical signaling molecules is beginning to be highlighted in Candida biology. The present study focuses on morphogenic compounds produced in situ by Candida albicans and Candida dubliniensis during planktonic and biofilm growth that may at least partially substantiate the effect promoted by supernatants in morphogenesis. For both species, planktonic versus biofilm supernatants were analyzed by headspace-solid-phase microextraction and gas chromatography-mass spectrometry. Both planktonic cells and biofilm supernatants of C. albicans and C. dubliniensis contained isoamyl alcohol, 2-phenylethanol, 1-dodecanol, E-nerolidol, and E,E-farnesol. Alcohol secretion profiles were species, culture mode, and growth time specific. The addition of exogenous alcohols to the cultures of both species inhibited the morphological transition from the yeast to the filamentous form by up to 50%. The physiological role of these alcohols was put to evidence by comparing the effects of a 96-h cultured supernatant with synthetic mixtures containing isoamyl alcohol, 2-phenylethanol, E-nerolidol, and E,E-farnesol at concentrations determined herein. All synthetic mixtures elicited a morphological effect similar to that observed for the corresponding supernatants when used to treat C. albicans and C. dubliniensis cultures, except for the effect of the 96-h C. dubliniensis planktonic supernatant culture on C. albicans. Overall, these results reveal a group of alcohol extracellular signaling molecules that are biologically active with C. albicans and C. dubliniensis morphogenesis.  相似文献   
48.
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.  相似文献   
49.
The inclusion of a genetic risk score (GRS) can modify the risk prediction of coronary artery disease (CAD), providing an advantage over the use of traditional models. The predictive value of the genetic information on the recurrence of major adverse cardiovascular events (MACE) remains controversial. A total of 33 genetic variants previously associated with CAD were genotyped in 1587 CAD patients from the GENEMACOR study. Of these, 18 variants presented an hazard ratio >1, so they were selected to construct a weighted GRS (wGRS). MACE discrimination and reclassification were evaluated by C-Statistic, Net Reclassification Index and Integrated Discrimination Improvement methodologies. After the addition of wGRS to traditional predictors, the C-index increased from 0.566 to 0.572 (p=0.0003). Subsequently, adding wGRS to traditional plus clinical risk factors, this model slightly improved from 0.620 to 0.622 but with statistical significance (p=0.004). NRI showed that 17.9% of the cohort was better reclassified when the primary model was associated with wGRS. The Kaplan-Meier estimator showed that, at 15-year follow-up, the group with a higher number of risk alleles had a significantly higher MACE occurrence (p=0.011). In CAD patients, wGRS improved MACE risk prediction, discrimination and reclassification over the conventional factors, providing better cost-effective therapeutic strategies.  相似文献   
50.
Trypanosoma cruzi is an intracellular protozoan parasite able to invade a wide variety of mammalian cells. To have access to the target organs/cells, the parasite must cross the basal laminae and the extracellular matrix (ECM). We previously characterized an 80-kDa proteinase (Tc80) secreted by the infective trypomastigotes that hydrolyzes native collagens and might be involved in infection by degrading ECM components. Here, we present evidence indicating a role for Tc80 in the invasion of nonphagocytic cells. Tc80 was classified as a member of the prolyl oligopeptidase (POP) family of serine proteases and was also found to hydrolyze fibronectin. Selective inhibitors for POP Tc80 were synthesized that blocked parasite entry into cells. Blockage occurred when trypomastigotes were preincubated with irreversible inhibitors but not after host cell preincubation, and the blockage correlated with inhibition of POP Tc80 activity in treated parasites. These data and the enzyme location inside a vesicular compartment close to the flagellar pocket, a specialized domain in endocytosis/exocytosis, strongly suggest a role for POP Tc80 in the maturation of parasite protein(s) and/or, after secretion, in a local action on parasite or host cell/ECM components required for invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号