首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   37篇
  553篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2020年   8篇
  2019年   8篇
  2018年   12篇
  2017年   11篇
  2016年   25篇
  2015年   44篇
  2014年   38篇
  2013年   45篇
  2012年   42篇
  2011年   34篇
  2010年   30篇
  2009年   16篇
  2008年   30篇
  2007年   21篇
  2006年   27篇
  2005年   11篇
  2004年   16篇
  2003年   10篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1993年   5篇
  1992年   3篇
  1991年   7篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1970年   3篇
  1902年   2篇
  1897年   4篇
  1877年   2篇
  1875年   1篇
排序方式: 共有553条查询结果,搜索用时 0 毫秒
551.
The responses of E-cells, basilar pyramidal cells, of the electrosensory lateral line lobe (ELLL) were studied in normal animals (Apteronotus leptorhynchus) and in fish in which a component of the descending input from the midbrain n. praeeminentialis to the ELLL was interrupted by lesions or by application of local anesthetics. This treatment increased the responsiveness of these neurons by 100 to 300%. A method is described by which the animal's electric organ discharge (EOD) can be increased or decreased in amplitude. Responses of E-cells to a brief stationary electrosensory stimulus and to moving electrolocation targets were studied in normal and in lesioned animals with normal and altered EOD amplitudes. Large reductions in EOD amplitude, approximately 50%, result in no significant changes in the average size of E-cells' responses to either type of electrosensory stimulus in normal animals. Interruption of the descending input, however, results in a loss of the E-cells' ability to maintain constant response size when the EOD amplitude is reduced. Increases in EOD amplitude cause reductions in the size of E-cell responses to the moving electrolocation targets and to the stationary stimulus. The effects of increased EOD amplitude are present in normal animals and in animals in which the descending input is interrupted. The descending input to the ELLL seems to function as a gain control mechanism that is capable of compensating for losses in stimulus strength resulting from reduced EOD amplitude. The component of the descending input studied here does not seem to play a role in the response of the system to increases in EOD amplitude. These results are discussed in conjunction with the known details of the ELLL circuitry and its connections with other brain areas.  相似文献   
552.
Evoked potentials (EPs) and single unit recordings from various electrosensory-processing regions of several pulse-type gymnotiform species were made to investigate neural activity patterns that could be associated with novelty detection. Whereas the electrosensory afferents and cells in the ELL exhibited only minor changes in response size as stimuli were presented less frequently (novel stimuli), most units studied in the torus semicircularis (TS) showed very strong, increased responsiveness to stimuli presented less frequently relative to stimuli presented persistently (at every EOD event. The responses of the TS were graded with respect to stimulus frequency. The discrimination between novel and persistent stimuli by the TS occurred with stimuli presented transversely or longitudinally with respect to the fish's long axis, and regardless of the timing of the stimulus with respect to the fish's pacemaker-related signal (PS). When electrosensory novelties were presented persistently the responses of the TS rapidly habituated. This may indicate that activity in this region of the TS is novelty related. This novelty-related activity in the TS can be correlated with certain aspects of the fish's behavior, i.e., EOD interval length during a behavioral novelty response. However, TS activity may continue to indicate the occurrence of electrosensory novelties after the behavior has habituated. It is suggested that the novelty-related activity of the TS of these fish is necessary, but not sufficient, for the production of electrosensory novelty-induced behavioral responses. Lesions of the region of the TS containing the rapidly-habituating neurons abolished the electrosensory novelty response, but not that resulting from visual and auditory stimulation.  相似文献   
553.
A method for the identification of T and B lymphocytes in tissue specimens is described. A sonication technique results in viable relatively pure lymphocyte populations which are easily classified by their surface markers. This readily reproducible method can become a standard laboratory procedure in the evaluation of disease states which require such information related to the classification of lymphocyte cell origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号