首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   18篇
  170篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   7篇
  2011年   9篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   8篇
  2000年   10篇
  1999年   6篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1967年   1篇
排序方式: 共有170条查询结果,搜索用时 0 毫秒
81.
Quorum sensing is a chemical signaling mechanism used by bacteria to communicate and orchestrate group behaviors. Multiple feedback loops exist in the quorum‐sensing circuit of the model bacterium Vibrio harveyi. Using fluorescence microscopy of individual cells, we assayed the activity of the quorum‐sensing circuit, with a focus on defining the functions of the feedback loops. We quantitatively investigated the signaling input–output relation both in cells with all feedback loops present as well as in mutants with specific feedback loops disrupted. We found that one of the feedback loops regulates receptor ratios to control the integration of multiple signals. Together, the feedback loops affect the input–output dynamic range of signal transmission and the noise in the output. We conclude that V. harveyi employs multiple feedback loops to simultaneously control quorum‐sensing signal integration and to ensure signal transmission fidelity.  相似文献   
82.

Background

Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects.

Methodology/Principal Findings

In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro.

Conclusions/Significance

These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in vivo.  相似文献   
83.
Bacterial social engagements   总被引:23,自引:0,他引:23  
Quorum sensing is a process that enables bacteria to communicate using secreted signaling molecules called autoinducers. This process enables a population of bacteria to regulate gene expression collectively and, therefore, control behavior on a community-wide scale. Quorum sensing is widespread in the bacterial world and, generally, processes controlled by quorum sensing are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. Cell-cell communication can occur within and between bacterial species, and between bacteria and their eukaryotic hosts, which suggests that the chemical lexicon is complex. Prokaryotic and eukaryotic mechanisms for enhancing and inhibiting quorum sensing have been identified, which suggests that manipulation of quorum-sensing-controlled processes could be common in bacterial-bacterial and bacterial-eukaryotic associations.  相似文献   
84.
OBJECTIVE: To verify that abnormal DNA ploidy in urine cytology can occasionally be attributed to contamination by seminal vesicle cells. STUDY DESIGN: In the first part of this study, we analyzed the DNA content of six urine cytology specimens containing seminal vesicle cells. In the second part, we evaluated 21 Feulgen-stained prostate core biopsies containing seminal vesicle-type epithelium using a CAS-200 system. DNA index, proliferative activity (S + G2M) and degree of hyperploidy (> 5C) were determined in each case. RESULTS: All six urine cytology specimens were diploid, with all but one containing hyperploid cells (range, 0-16%; mean, 6.3%). Seminal vesicle cells from prostate biopsies showed a broad range of ploidy abnormalities. Ten cases (48%) showed an aneuploid peak, two cases (9%) showed a tetraploid peak, and nine cases (43%) showed only a diploid peak. All but one case showed both an elevation in proliferative activity (mean S + G2M, 24.2%) and some hyperploid cells (mean, > 5C; 4.5%). CONCLUSION: Seminal vesicle cells, although rarely seen in urine cytology, can cause abnormal DNA ploidy measurements. Morphologic criteria remain vital to an accurate cytologic diagnosis.  相似文献   
85.
To study whether absolute (m/s) or relative (body lengths/s) speed should be used to compare the vulnerability of differently sized animals, we developed a simple computer simulation. Human 'predators' were asked to 'catch' (mouse-click) prey of different sizes, moving at different speeds across a computer screen. Using the simulation, a prey's chances of escaping predation depended on its speed (faster prey were more difficult to catch than slower prey of the same body size), but also on its size (larger prey were easier to catch than smaller prey at the same speed). Catching time, the time needed to catch a prey, also depended on both prey speed and prey size. Relative prey speed (body lengths/s or body surface/s) was a better predictor of catching time than was absolute prey speed (m/s). Our experiment demonstrates that, in contrast to earlier assertions, per unit body length speed of prey may be more 'ecologically relevant' than absolute speed. Copyright 1998 The Association for the Study of Animal Behaviour.  相似文献   
86.
87.
Small talk. Cell-to-cell communication in bacteria   总被引:31,自引:0,他引:31  
Bassler BL 《Cell》2002,109(4):421-424
In a process called quorum sensing, groups of bacteria communicate with one another to coordinate their behavior and function like a multicellular organism. A diverse array of secreted chemical signal molecules and signal detection apparatuses facilitate highly productive intra- and interspecies relationships.  相似文献   
88.
89.
The nucleotide cyclase CyaC of Sinorhizobium meliloti is a member of class III adenylate cyclases (AC), a diverse group present in all forms of life. CyaC is membrane‐integral by a hexahelical membrane domain (6TM) with the basic topology of mammalian ACs. The 6TM domain of CyaC contains a tetra‐histidine signature that is universally present in the membrane anchors of bacterial diheme‐B succinate‐quinone oxidoreductases. Heterologous expression of cyaC imparted activity for cAMP formation from ATP to Escherichia coli, whereas guanylate cyclase activity was not detectable. Detergent solubilized and purified CyaC was a diheme‐B protein and carried a binuclear iron‐sulfur cluster. Single point mutations in the signature histidine residues caused loss of heme‐B in the membrane and loss of AC activity. Heme‐B of purified CyaC could be oxidized or reduced by ubiquinone analogs (Q0 or Q0H2). The activity of CyaC in bacterial membranes responded to oxidation or reduction by Q0 and O2, or NADH and Q0H2 respectively. We conclude that CyaC‐like membrane anchors of bacterial ACs can serve as the input site for chemical stimuli which are translated by the AC into an intracellular second messenger response.  相似文献   
90.
Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号