首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   39篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1988年   2篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1973年   6篇
  1972年   5篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1966年   3篇
  1965年   2篇
  1963年   1篇
  1959年   1篇
  1950年   1篇
排序方式: 共有134条查询结果,搜索用时 125 毫秒
91.
Shoot-forming tobacco (Nicotiana tabacum var. Wisconsin 38) callus tissues contain significantly lower concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid compared to non-shoot-forming callus tissues. This difference is evident 1 day after subculture to shoot-forming or non-shoot-forming medium, and is maintained through the first week of growth. The lack of auxin in shoot-forming medium is the probable cause for this difference in ACC concentrations.  相似文献   
92.
Callus cultures derived from pith tissue of Nicotiana tabacum were grown on two media either under continuous illumination or in complete darkness. The first medium limited greening ability of callus grown in the light (3 milligrams per liter naphthalene acetic acid, 0.3 milligram per liter 2-isopentenylaminopurine, Murashige and Skoog salts, and 2% sucrose). The second medium encouraged chlorophyll synthesis (greening) though not shoot formation (0.3 milligram per liter naphthalene acetic acid; 0.3 milligrans per liter 2-isopentylaminopurine). To measure intracellular concentrations, calli were grown for 15 days on these standard media containing [U-14C]sucrose. The dry weight proportions of the calli (as a fraction of fresh weight) and many metabolite concentrations nearly doubled in light-grown cells compared to dark-grown cells and increased 30 to 40% on low-auxin media relative to high-auxin media. Glutamine concentrations (from 4 to 26 millimolar) were very high, probably due to the NH3 content of the media. Proline concentrations were 20-fold higher in calli grown on low-auxin media in the light (green cells), possibly a stress response to high osmotic potentials in these cells. To analyze sucrose metabolism, callus cells were allowed to take up 0.2% (weight per volume) [U-14C]sucrose for up to 90 minutes. In callus tissues and in pith sections from stems of tobacco plants, sucrose was primarily metabolized through invertase activity, producing equal amounts of labeled glucose and fructose. Respiration of 14CO2 followed the labeling patterns of tricarboxylic acid cycle intermediates. Photorespiration activity was low.  相似文献   
93.
Paul  John S.  Cornwell  Karen L.  Bassham  James A. 《Planta》1978,142(1):49-54
Addition of ammonia to a suspension of photosynthesizing isolated mesophyll cells from P. somniferum quantitatively alters the pattern of carbon metabolism by increasing rates of certain key ratelimiting steps leading to amino-acid synthesis and by decreasing rates of rate-limiting steps in alternative biosynthetic pathways. Of particular importance is the stimulation of reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase. The increased rates of these two reactions, which result in an increased flow of carbon into the tricarboxylic-acid cycle, correlate with a rapid rise in glutamine (via glutamine synthetase) which draws carbon off the tricarboxylic-acid cycle as -ketoglutarate. Increased flux of carbon in this direction appears to come mainly at the expense of sucrose synthesis. The net effect of addition of ammonia to mesophyll cells is thus a redistribution of newly fixed carbon away from carbohydrates and into amino acids.  相似文献   
94.
Klaus Lendzian  James A. Bassham 《BBA》1976,430(3):478-489
Levels of reduced and oxidized triphosphopyridine nucleotides have been determined in reconstituted spinach chloroplasts and compared with levels in whole isolated chloroplasts during photosynthesis and darkness. The ratio of NADPH/NADP+ reaches values slightly above 1.0 at the beginning of photosynthesis, less than half the ratio attained with whole chloroplasts. Nonetheless these lower ratios are sufficient to maintain high rates of photosynthetic carbon dioxide fixation and reduction, which are comparable in the reconstituted chloroplasts to the rates found with whole chloroplasts. As with whole chloroplasts there is a decline in the ratio of NADPH/NADP+ as a function of time of photosynthesis. The effect of addition of bicarbonate (6 mM) in causing a transient drop in the ratio of NADPH/NADP+ is described and discussed in terms of the reversibility of the reduction of 3-phosphoglycerate to triose phosphate. The ratio NADPH/NADP+ can be improved by the addition of more lamellae either before or during the course of photosynthesis, and this improvement in ratio is accompanied by an improved rate of CO2 fixation or a more sustained rate of CO2 fixation with time of photosynthesis. The importance of NADPH/NADP+ ratio not only to the reduction of 3-phosphoglycerate to triose phosphate but also to the activation of the ribulose-1,5-diphosphate carboxylasemediated step is discussed.  相似文献   
95.
Levels of reduced and oxidized triphosphopyridine nucleotides have been determined in reconstituted spinach chloroplasts and compared with levels in whole isolated chloroplasts during photosynthesis and darkness. The ratio of NADPH/NADP+ reaches values slightly above 1.0 at the beginning of photosynthesis, less than half the ratio attained with whole chloroplasts. Nonetheless these lower ratios are sufficient to maintain high rates of photosynthetic carbon dioxide fixation and reduction, which are comparable in the reconstituted chloroplasts to the rates found with whole chloroplasts. As with whole chloroplasts there is a decline in the ration of NADPH/NADP+ as a function of time of photosynthesis. The effect of addition of bicarbonate (6 mM) in causing a transient drop in the ratio of NADPH/NADP/ is described and discussed in terms of the reversibility of the reduction of 3-phosphoglycerate to triose phosphate. The ratio NADPH/NADP+ can be improved by the addition of more lamellae either before or during the course of photosynthesis, and this improvement in ratio is accompanied by an improved rate of CO2 fixation or a more sustained rate of CO2 fixation with time of photosynthesis. The importance of NADPH/NADP+ ratio not only to the reduction of 3-phosphoglycerate to triose phosphate but also to the activation of the ribulose-1,5-diphosphate carboxylasemediated step is discussed.  相似文献   
96.
Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 10 mm MgCl2 and 1 mm bicarbonate in the absence of ribulose 1,5-diphosphate, can be further activated about 170% with 0.5 mm NADPH present in the preincubation mixture. NADP+, NADH, and NAD+ are ineffective. The activation by NADPH is comparable to that previously seen with 0.05 to 0.10 mm 6-phosphogluconate in that these specific preincubation conditions are required, but the effects of NADPH and 6-phosphogluconate are not additive. Moreover, where higher concentrations of 6-phosphogluconate inhibited the enzyme, higher concentrations of NADPH give a greater activation, saturating at about 1 mm and 200%. Under the specified conditions of preincubation, fructose 1,6-diphosphate has an activation curve similar to that of 6-phosphogluconate, peaking at 0.1 mm and 70%. Above this level, activation decreases, and inhibition is seen at still higher concentrations. Other metabolites tested produced smaller or no effects on the enzyme activity assayed under these conditions. When either reduced NADP or 6-phosphogluconate are present in the preincubation mixture, it becomes possible to determine the Km for bicarbonate using a Lineweaver-Burk plot, and the Km for bicarbonate under these conditions is 2.8 mm, corresponding to 0.3% CO2 at pH 7.8 and 25 C.  相似文献   
97.
Single-cell RNA sequencing is a powerful technique that continues to expand across various biological applications. However, incomplete 3′-UTR annotations can impede single-cell analysis resulting in genes that are partially or completely uncounted. Performing single-cell RNA sequencing with incomplete 3′-UTR annotations can hinder the identification of cell identities and gene expression patterns and lead to erroneous biological inferences. We demonstrate that performing single-cell isoform sequencing in tandem with single-cell RNA sequencing can rapidly improve 3′-UTR annotations. Using threespine stickleback fish (Gasterosteus aculeatus), we show that gene models resulting from a minimal embryonic single-cell isoform sequencing dataset retained 26.1% greater single-cell RNA sequencing reads than gene models from Ensembl alone. Furthermore, pooling our single-cell sequencing isoforms with a previously published adult bulk Iso-Seq dataset from stickleback, and merging the annotation with the Ensembl gene models, resulted in a marginal improvement (+0.8%) over the single-cell isoform sequencing only dataset. In addition, isoforms identified by single-cell isoform sequencing included thousands of new splicing variants. The improved gene models obtained using single-cell isoform sequencing led to successful identification of cell types and increased the reads identified of many genes in our single-cell RNA sequencing stickleback dataset. Our work illuminates single-cell isoform sequencing as a cost-effective and efficient mechanism to rapidly annotate genomes for single-cell RNA sequencing.  相似文献   
98.
Ribosomes are essential components of all cells. A large body of knowledge has been accumulated regarding ribosome synthesis and assembly; however, the pathways of normal ribosome turnover, especially rRNA decay, are not known. Some information on ribosome recycling derives from studies on starved yeast cells that use a specialized type of autophagy, called ribophagy, to differentially target ribosomes for degradation. We found that Arabidopsis RNS2, a conserved ribonuclease of the RNase T2 family, is necessary for normal decay of rRNA. Mutants lacking RNS2 activity have longer-lived rRNA, accumulate RNA in the vacuole and show constitutive macroautophagy. Thus, it is clear that normal rRNA decay is necessary to maintain cellular homeostasis. These phenotypes and the subcellular localization of RNS2 in the endoplasmic reticulum and the vacuole suggest that RNS2 participates in a ribophagy-like mechanism that targets ribosomes for recycling under normal growth conditions.  相似文献   
99.
The Path of Carbon in Photosynthesis, XI The Role of Glycolic Acid   总被引:1,自引:0,他引:1  
  相似文献   
100.
Ribosomes account for a majority of the cell''s RNA and much of its protein and represent a significant investment of cellular resources. The turnover and degradation of ribosomes has been proposed to play a role in homeostasis and during stress conditions. Mechanisms for the turnover of rRNA and ribosomal proteins have not been fully elucidated. We show here that the RNS2 ribonuclease and autophagy participate in RNA turnover in Arabidopsis thaliana under normal growth conditions. An increase in autophagosome formation was seen in an rns2–2 mutant, and this increase was dependent on the core autophagy genes ATG9 and ATG5. Autophagosomes and autophagic bodies in rns2–2 mutants contain RNA and ribosomes, suggesting that autophagy is activated as an attempt to compensate for loss of rRNA degradation. Total RNA accumulates in rns2–2, atg9–4, atg5–1, rns2–2 atg9–4, and rns2–2 atg5–1 mutants, suggesting a parallel role for autophagy and RNS2 in RNA turnover. rRNA accumulates in the vacuole in rns2–2 mutants. Vacuolar accumulation of rRNA was blocked by disrupting autophagy via an rns2–2 atg5–1 double mutant but not by an rns2–2 atg9–4 double mutant, indicating that ATG5 and ATG9 function differently in this process. Our results suggest that autophagy and RNS2 are both involved in homeostatic degradation of rRNA in the vacuole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号