首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  2022年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
排序方式: 共有64条查询结果,搜索用时 421 毫秒
11.
The ionization state of aspartate 26 in Lactobacillus casei dihydrofolate reductase has been investigated by selectively labeling the enzyme with [13Cgamma] aspartic acid and measuring the 13C chemical shifts in the apo, folate-enzyme, and dihydrofolate-enzyme complexes. Our results indicate that no aspartate residue has a pKa greater than approximately 4.8 in any of the three complexes studied. The resonance of aspartate 26 in the dihydrofolate-enzyme complex has been assigned by site-directed mutagenesis; aspartate 26 is found to have a pKa value of less than 4 in this complex. Such a low pKa value makes it most unlikely that the ionization of this residue is responsible for the observed pH profile of hydride ion transfer [apparent pKa = 6.0; Andrews, J., Fierke, C. A., Birdsall, B., Ostler, G., Feeney, J., Roberts, G. C. K., and Benkovic, S. J. (1989) Biochemistry 28, 5743-5750]. Furthermore, the downfield chemical shift of the Asp 26 (13)Cgamma resonance in the dihydrofolate-enzyme complex provides experimental evidence that the pteridine ring of dihydrofolate is polarized when bound to the enzyme. We propose that this polarization of dihydrofolate acts as the driving force for protonation of the electron-rich O4 atom which occurs in the presence of NADPH. After this protonation of the substrate, a network of hydrogen bonds between O4, N5 and a bound water molecule facilitates transfer of the proton to N5 and transfer of a hydride ion from NADPH to the C6 atom to complete the reduction process.  相似文献   
12.
It is now widely accepted that enzyme-catalysed C-H bond breakage occurs by quantum mechanical tunnelling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (TST, i.e. including zero-point energy, but with no tunnelling correction) has been driven over the recent years by experimental studies of the temperature dependence of kinetic isotope effects (KIEs) for these reactions in a range of enzymes, including the tryptophan tryptophylquinone-dependent enzymes such as methylamine dehydrogenase and aromatic amine dehydrogenase, and the flavoenzymes such as morphinone reductase and pentaerythritol tetranitrate reductase, which produced observations that are also inconsistent with the simple Bell-correction model of tunnelling. However, these data-especially, the strong temperature dependence of reaction rates and the variable temperature dependence of KIEs-are consistent with other tunnelling models (termed full tunnelling models), in which protein and/or substrate fluctuations generate a configuration compatible with tunnelling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate nuclear quantum states and, when necessary, motion required to increase the probability of tunnelling in these states. Furthermore, tunnelling mechanisms in enzymes are supported by atomistic computational studies performed within the framework of modern TST, which incorporates quantum nuclear effects.  相似文献   
13.
Dihydroorotate dehydrogenase B (DHODB) catalyzes the oxidation of dihydroorotate (DHO) to orotate and is found in the pyrimidine biosynthetic pathway. The Lactococcus lactis enzyme is a dimer of heterodimers containing FMN, FAD, and a 2Fe-2S center. Lys-D48 is found in the catalytic subunit and its side-chain adopts different positions, influenced by ligand binding. Based on crystal structures of DHODB in the presence and absence of orotate, we hypothesized that Lys-D48 has a role in facilitating electron transfer in DHODB, specifically in stabilizing negative charge in the reduced FMN isoalloxazine ring. We show that mutagenesis of Lys-D48 to an alanine, arginine, glutamine, or glutamate residue (mutants K38A, K48R, K48Q, and K48E) impairs catalytic turnover substantially (approximately 50-500-fold reduction in turnover number). Stopped-flow studies demonstrate that loss of catalytic activity is attributed to poor rates of FMN reduction by substrate. Mutation also impairs electron transfer from the 2Fe-2S center to FMN. Addition of methylamine leads to partial rescue of flavin reduction activity. Nicotinamide coenzyme oxidation and reduction at the distal FAD site is unaffected by the mutations. Formation of the spin-interacting state between the FMN semiquinone-reduced 2Fe-2S centers observed in wild-type enzyme is retained in the mutant proteins, consistent with there being little perturbation of the superexchange paths that contribute to the efficiency of electron transfer between these cofactors. Our data suggest a key charge-stabilizing role for Lys-D48 during reduction of FMN by dihydroorotate, or by electron transfer from the 2Fe-2S center, and establish a common mechanism of FMN reduction in the single FMN-containing A-type and the complex multicenter B-type DHOD enzymes.  相似文献   
14.
As members of the family of heme-dependent enzymes, the heme dioxygenases are differentiated by virtue of their ability to catalyze the oxidation of l-tryptophan to N-formylkynurenine, the first and rate-limiting step in tryptophan catabolism. In the past several years, there have been a number of important developments that have meant that established proposals for the reaction mechanism in the heme dioxygenases have required reassessment. This focused review presents a summary of these recent advances, written from a structural and mechanistic perspective. It attempts to present answers to some of the long-standing questions, to highlight as yet unresolved issues, and to explore the similarities and differences of other well-known catalytic heme enzymes such as the cytochromes P450, NO synthase, and peroxidases.  相似文献   
15.
Basran J  Fullerton S  Leys D  Scrutton NS 《Biochemistry》2006,45(37):11151-11161
Residues His-225 and Tyr-259 are located close to the FAD in the dehydrogenase active site of the bifunctional dimethylglycine oxidase (DMGO) of Arthrobacter globiformis. We have suggested [Leys, D., Basran, J., and Scrutton, N. S. (2003) EMBO J. 22, 4038-4048] that these residues are involved in abstraction of a proton from the substrate amine group of dimethylglycine prior to C-H bond breakage and FAD reduction. To investigate this proposal, we have isolated two mutant forms of DMGO in which (i) His-225 is replaced with Gln-225 (H225Q mutant) and (ii) Tyr-259 is replaced with Phe-259 (Y259F mutant). Both mutant enzymes retain the ability to oxidize substrate, but the steady-state turnover of the Y259F mutant is attenuated more than 200-fold. Only modest changes in kinetic parameters are observed for the H225Q mutant during steady-state turnover. Stopped-flow studies indicate that the rate of FAD reduction in the Y259F enzyme is substantially impaired by a factor of approximately 1500 compared with that of the wild-type enzyme, suggesting a key role for this residue in the reductive half-reaction of the enzyme. The kinetics of FAD reduction in the H225Q enzyme are complex and involve three discrete kinetic phases that are attributed to different conformational states of this mutant, evidence for which is provided by crystallographic analysis. Neither the H225Q enzyme nor the Y259F enzyme stabilizes the FADH(2)-iminium charge-transfer complex observed previously in stopped-flow studies with the wild-type enzyme. Our studies are consistent with a key role for Tyr-259, but not His-225, in deprotonation of the substrate amine group prior to FAD reduction. We infer that residue His-225 is likely to modulate the acid-base properties of Tyr-259 by perturbing the pK(a) of Tyr-259 and thus fine-tunes the reaction chemistry to facilitate proton abstraction under physiological conditions. Our data are discussed in the context of the crystallographic data for DMGO and also in relation to contemporary mechanisms for flavoprotein-catalyzed oxidation of amine substrates.  相似文献   
16.
Green fluorescent protein and its variants are frequently used as F?rster (fluorescence) resonance energy transfer (FRET) pairs to determine the proximity of protein domains. We prepared fusion proteins comprising yellow fluorescent protein-Dictyostelium myosin II motor domain-cyan fluorescent protein (YFP-myosin-CFP) and compared their FRET properties with an existing construct (GFP-myosin-BFP), containing a green fluorescent protein acceptor and blue fluorescent protein donor [Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. and Sutoh, K. (1998) Nature 396, 380-383]. The latter construct showed an apparent 40% reduction in acceptor fluorescence on ATP addition, when excited via the donor, compared with the YFP-myosin-CFP constructs which showed a small increase (相似文献   
17.
Tyr-169 in trimethylamine dehydrogenase is one component of a triad also comprising residues His-172 and Asp-267. Its role in catalysis and in mediating the magnetic interaction between FMN cofactor and the 4Fe/4S center have been investigated by stopped-flow and EPR spectroscopy of a Tyr-169 to Phe (Y169F) mutant of the enzyme. Tyr-169 is shown to play an important role in catalysis (mutation to phenylalanine reduces the limiting rate constant for bleaching of the active site flavin by about 100-fold) but does not serve as a general base in the course of catalysis. In addition, we are able to resolve two kinetically influential ionizations involved in both the reaction of free enzyme with free substrate (as reflected in klim/Kd), and in the breakdown of the Eox.S complex (as reflected in klim). In EPR studies of the Y169F mutant, it is found that the ability of the Y169F enzyme to form the spin-interacting state between flavin semiquinone and reduced 4Fe/4S center characteristic of wild-type enzyme is significantly compromised. The present results are consistent with Tyr-169 representing the ionizable group of pKa approximately 9.5, previously identified in pH-jump studies of electron transfer, whose deprotonation must occur for the spin-interacting state to be established.  相似文献   
18.
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.  相似文献   
19.
The crystal structures of an acetyl esterase, HerE, and its complex with an inhibitor dimethylarsinic acid have been determined at 1.30- and 1.45-A resolution, respectively. Although the natural substrate for the enzyme is unknown, HerE hydrolyzes the acetyl groups from heroin to yield morphine and from phenyl acetate to yield phenol. Recently, the activity of the enzyme toward heroin has been exploited to develop a heroin biosensor, which affords higher sensitivity than other currently available detection methods. The crystal structure reveals a single domain with the canonical alpha/beta hydrolase fold with an acyl binding pocket that snugly accommodates the acetyl substituent of the substrate and three backbone amides that form a tripartite oxyanion hole. In addition, a covalent adduct was observed between the active site serine and dimethylarsinic acid, which inhibits the enzyme. This crystal structure provides the first example of an As-containing compound in a serine esterase active site and the first example of covalent modification of serine by arsenic. Thus, the HerE complex reveals the structural basis for the broad scope inhibition of serine hydrolases by As(V)-containing organic compounds.  相似文献   
20.
TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号