首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   35篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   10篇
  2013年   7篇
  2012年   14篇
  2011年   18篇
  2010年   23篇
  2009年   13篇
  2008年   9篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1982年   2篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
41.

Background  

Dispersal plays a key role in shaping biological and ecological processes such as the distribution of spatially-structured populations or the pace and scale of invasion. Here we have studied the relationship between long-distance dispersal behaviour of a pest-controlling money spider,Erigone atra, and the distribution of maternally acquired endosymbionts within the wider meta-population. This spider persists in heterogeneous environments because of its ability to recolonise areas through active long-distance airborne dispersal using silk as a sail, in a process termed 'ballooning'.  相似文献   
42.
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of Johne's disease, a highly prevalent chronic intestinal infection in domestic and wildlife ruminants. The microbial pathogenesis of MAP infection has attracted additional attention due to an association with the human enteric inflammatory Crohn's disease. MAP is acquired by the faecal–oral route prompting us to study the interaction with differentiated intestinal epithelial cells. MAP was rapidly internalized and accumulated in a late endosomal compartment. In contrast to other opportunistic mycobacteria or M. bovis, MAP induced significant epithelial activation as indicated by a NF-κB-independent but Erk-dependent chemokine secretion. Surprisingly, MAP-induced chemokine production was completely internalization-dependent as inhibition of Rac-dependent bacterial uptake abolished epithelial activation. In accordance, innate immune recognition of MAP by differentiated intestinal epithelial cells occurred through the intracellularly localized pattern recognition receptors toll-like receptor 9 and NOD1 with signal transduction via the adaptor molecules MyD88 and RIP2. The internalization-dependent innate immune activation of intestinal epithelial cells is in contrast to the stimulation of professional phagocytes by extracellular bacterial constituents and might significantly contribute to the histopathological changes observed during enteric MAP infection.  相似文献   
43.
Morphogen gradients play a fundamental role in organ patterning and organ growth. Unlike their role in patterning, their function in regulating the growth and the size of organs is poorly understood. How and why do morphogen gradients exert their mitogenic effects to generate uniform proliferation in developing organs, and by what means can morphogens impinge on the final size of organs? The decapentaplegic (Dpp) gradient in the Drosophila wing imaginal disc has emerged as a suitable and established system to study organ growth. Here, we review models and recent findings that attempt to address how the Dpp morphogen contributes to uniform proliferation of cells, and how it may regulate the final size of wing discs.  相似文献   
44.
We generated from a single blood sample five independent human mAbs that recognized the Sa antigenic site on the head of influenza hemagglutinin and exhibited inhibitory activity against a broad panel of H1N1 strains. All five Abs used the V(H)3-7 and J(H)6 gene segments, but at least four independent clones were identified by junctional analysis. High-throughput sequence analysis of circulating B cells revealed that each of the independent clones were members of complex phylogenetic lineages that had diversified widely using a pattern of progressive diversification through somatic mutation. Unexpectedly, B cells encoding multiple diverging lineages of these clones, including many containing very few mutations in the Ab genes, persisted in the circulation. Conversely, we noted frequent instances of amino acid sequence convergence in the Ag combining sites exhibited by members of independent clones, suggesting a strong selection for optimal binding sites. We suggest that maintenance in circulation of a wide diversity of somatic variants of dominant clones may facilitate recognition of drift variant virus epitopes that occur in rapidly mutating virus Ags, such as influenza hemagglutinin. In fact, these Ab clones recognize an epitope that acquired three glycosylation sites mediating escape from previously isolated human Abs.  相似文献   
45.
The conserved influenza virus hemagglutinin (HA) stem domain elicits cross-reactive antibodies, but epitopes in the globular head typically elicit strain-specific responses because of the hypervariability of this region. We isolated human monoclonal antibody 5J8, which neutralized a broad spectrum of 20th century H1N1 viruses and the 2009 pandemic H1N1 virus. Fine mapping of the interaction unexpectedly revealed a novel epitope between the receptor-binding pocket and the Ca2 antigenic site on HA. This antibody exposes a new mechanism underlying broad immunity against H1N1 influenza viruses and identifies a conserved epitope that might be incorporated into engineered H1 virus vaccines.  相似文献   
46.
Two former biologists play at dice. In the center of the table there are several banknotes from a prize they had won a few years before they dropped out of science. The rule of the game is that each player gets a banknote whenever he correctly predicts how many throws it will take after throwing a 6 to throw the next 6. One of the two players, a former theoretical biologist, remembers that the frequency of throwing a 6 is one in six, so he always foretells that the waiting period will be 6. The other player's cause for failing in science was opposite: he believed in superstitions. As his lucky number is three, he guesses after each 6 that the next 6 will occur three throws later. Which of the two fellows will recover more from the prize money? And is there a waiting period that could be predicted that would make more money?  相似文献   
47.
The bacterial Type VI secretion system (T6SS) assembles from three major parts: a membrane complex that spans inner and outer membranes, a baseplate, and a sheath–tube polymer. The baseplate assembles around a tip complex with associated effectors and connects to the membrane complex by TssK. The baseplate assembly initiates sheath–tube polymerization, which in some organisms requires TssA. Here, we analyzed both ends of isolated non‐contractile Vibrio cholerae sheaths by cryo‐electron microscopy. Our analysis suggests that the baseplate, solved to an average 8.0 Å resolution, is composed of six subunits of TssE/F2/G and the baseplate periphery is decorated by six TssK trimers. The VgrG/PAAR tip complex in the center of the baseplate is surrounded by a cavity, which may accommodate up to ~450 kDa of effector proteins. The distal end of the sheath, resolved to an average 7.5 Å resolution, shows sixfold symmetry; however, its protein composition is unclear. Our structures provide an important step toward an atomic model of the complete T6SS assembly.  相似文献   
48.
Secretion systems are essential for bacteria to survive and manipulate their environment. The bacterial type VI secretion system (T6SS) generates the force needed for protein translocation by the contraction of a long polymer called sheath. The sheath is a six‐start helical assembly of interconnected VipA/VipB subunits. The mechanism of T6SS sheath contraction is unknown. Here, we show that elongating the N‐terminal VipA linker or eliminating charge of a specific VipB residue abolishes sheath contraction and delivery of effectors into target cells. Mass spectrometry analysis identified the inner tube protein Hcp, spike protein VgrG, and other components of the T6SS baseplate significantly enriched in samples of the stable non‐contractile sheaths. The ability to lock the T6SS in the pre‐firing state opens new possibilities for understanding its mode of action.  相似文献   
49.
The assumption is tested that changes from poor to good postural habits can be identified by specific patterns in paraspinal activity. Paraspinal activity is measured by using an electromyographic (EMG) scanning procedure introduced by Cram. Two samples were addressed. The first sample consists of 32 pain-free medical students. Measurements were taken twice at intervals 3 min apart in a sitting position with arms hanging at the side. The first assessment refers to a normal and relaxed, and the second assessment to an upright physiological position of the spine recommended by Brügger. Data indicate that changes to good postural habits are represented by a significant decrease in the activity of the cervical paraspinal area (CPS), whereas in the trapezius and the thoracic area (T1, T6), the activity of the muscles is significantly increased. The hypothesis is put forward that these changes also occur as a consequence of a preventive low back school training. The second sample consists of 26 asymptomatic female employees of a medical hospital who had previously suffered from back pain attacks, but who were without pain during the assessments. Recordings taken before and after participation in the back school at 3 months apart show a similar pattern of significant changes in paraspinal activity (CPS, T6), although their magnitude is less pronounced. No pre-post changes could be observed in the trapezius. The findings partly support the hypothesis. Further research is needed to evaluate the relationship between EMG recordings and postural habits.  相似文献   
50.
For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for development of therapeutic interventions against NiV infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号